Microscopic model for FitzHugh-Nagumo dynamics

被引:25
|
作者
Malevanets, A
Kapral, R
机构
[1] Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, ON
来源
PHYSICAL REVIEW E | 1997年 / 55卷 / 05期
关键词
D O I
10.1103/PhysRevE.55.5657
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A microscopic reaction model with a FitzHugh-Nagumo mass action law is introduced. A Markov chain that uses a birth-death description of the reaction mechanism and a random walk model for diffusion is constructed and implemented as a lattice-gas automaton. It is shown that the local particle density probability distribution is binomial in the high diffusion limit and the average particle density is governed by the FitzHugh-Nagumo reaction-diffusion equation. The lattice-gas simulations are able to reproduce phenomena such as labyrinthine patterns and Bloch fronts predicted to exist on the basis of the reaction-diffusion equation. The effects of fluctuations on these chemical patterns, the breakdown of the mass-action and reaction-diffusion descriptions, and the existence of phase transitions in the strong reaction limit are discussed.
引用
收藏
页码:5657 / 5670
页数:14
相关论文
共 50 条
  • [31] An Analysis of the Reliability Phenomenon in the FitzHugh-Nagumo Model
    Efstratios K. Kosmidis
    K. Pakdaman
    [J]. Journal of Computational Neuroscience, 2003, 14 : 5 - 22
  • [32] Stochastic resonance in FitzHugh-Nagumo neural model
    Zhou, Dengrong
    Gong, Jianchun
    Li, Dan
    [J]. AUTOMATIC CONTROL AND MECHATRONIC ENGINEERING II, 2013, 415 : 298 - +
  • [33] MICROCONTROLLER BASED MODEL OF FITZHUGH-NAGUMO SYSTEM
    Petrovas, Andrius
    Lisauskas, Saulius
    Slepikas, Alvydas
    [J]. ELECTRICAL AND CONTROL TECHNOLOGIES, 2012, : 78 - +
  • [34] A Remark on the Meromorphic Solutions in the FitzHugh-Nagumo Model
    Lu, Feng
    He, Chun
    Xu, Junfeng
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (04) : 2479 - 2488
  • [35] An efficient analysis of FitzHugh-Nagumo circuit model
    Khakipoor, Yosef
    Bahar, Hossein B.
    Karimian, Ghader
    [J]. ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 2022, 110 (03) : 385 - 393
  • [36] SPIRAL BREAKUP IN A MODIFIED FITZHUGH-NAGUMO MODEL
    PANFILOV, A
    HOGEWEG, P
    [J]. PHYSICS LETTERS A, 1993, 176 (05) : 295 - 299
  • [37] Dynamics of FitzHugh-Nagumo excitable systems with delayed coupling
    Buric, N
    Todorovic, D
    [J]. PHYSICAL REVIEW E, 2003, 67 (06):
  • [38] Dynamics of a FitzHugh-Nagumo system subjected to autocorrelated noise
    D. Valenti
    G. Augello
    B. Spagnolo
    [J]. The European Physical Journal B, 2008, 65 : 443 - 451
  • [39] Dynamics of a FitzHugh-Nagumo system subjected to autocorrelated noise
    Valenti, D.
    Augello, G.
    Spagnolo, B.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2008, 65 (03): : 443 - 451
  • [40] Viscoelastic Fitzhugh-Nagumo models
    Bini, D
    Cherubini, C
    Filippi, S
    [J]. PHYSICAL REVIEW E, 2005, 72 (04):