Microscopic model for FitzHugh-Nagumo dynamics

被引:25
|
作者
Malevanets, A
Kapral, R
机构
[1] Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, ON
来源
PHYSICAL REVIEW E | 1997年 / 55卷 / 05期
关键词
D O I
10.1103/PhysRevE.55.5657
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A microscopic reaction model with a FitzHugh-Nagumo mass action law is introduced. A Markov chain that uses a birth-death description of the reaction mechanism and a random walk model for diffusion is constructed and implemented as a lattice-gas automaton. It is shown that the local particle density probability distribution is binomial in the high diffusion limit and the average particle density is governed by the FitzHugh-Nagumo reaction-diffusion equation. The lattice-gas simulations are able to reproduce phenomena such as labyrinthine patterns and Bloch fronts predicted to exist on the basis of the reaction-diffusion equation. The effects of fluctuations on these chemical patterns, the breakdown of the mass-action and reaction-diffusion descriptions, and the existence of phase transitions in the strong reaction limit are discussed.
引用
收藏
页码:5657 / 5670
页数:14
相关论文
共 50 条
  • [21] An analysis of the reliability phenomenon in the FitzHugh-Nagumo model
    Kosmidis, Efstratios K.
    Pakdaman, K.
    [J]. J. Comput. Neurosci., 1600, 1 (5-22):
  • [22] On a Kinetic Fitzhugh-Nagumo Model of Neuronal Network
    Mischler, S.
    Quininao, C.
    Touboul, J.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 342 (03) : 1001 - 1042
  • [23] An efficient analysis of FitzHugh-Nagumo circuit model
    Yosef Khakipoor
    Hossein B. Bahar
    Ghader Karimian
    [J]. Analog Integrated Circuits and Signal Processing, 2022, 110 : 385 - 393
  • [24] Metric graph version of the FitzHugh-Nagumo model
    Fedorov, E. G.
    Popov, A., I
    Popov, I. Y.
    [J]. NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2019, 10 (06): : 623 - 626
  • [25] Analytical properties of the perturbed FitzHugh-Nagumo model
    Kudryashov, Nikolay A.
    Rybka, Roman B.
    Sboev, Aleksander G.
    [J]. APPLIED MATHEMATICS LETTERS, 2018, 76 : 142 - 147
  • [26] STOCHASTIC RESONANCE IN AN ELECTRONIC FITZHUGH-NAGUMO MODEL
    MOSS, F
    DOUGLASS, JK
    WILKENS, L
    PIERSON, D
    PANTAZELOU, E
    [J]. STOCHASTIC PROCESSES IN ASTROPHYSICS, 1993, 706 : 26 - 41
  • [27] Dynamics of noisy FitzHugh-Nagumo neurons with delayed coupling
    Buric, Nikola
    Todorovic, Kristina
    Vasovic, Nebojsa
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 40 (05) : 2405 - 2413
  • [28] Dynamics of two FitzHugh-Nagumo systems with delayed coupling
    Yuan, GY
    Yang, SP
    Wang, GR
    Chen, SC
    [J]. ACTA PHYSICA SINICA, 2005, 54 (04) : 1510 - 1522
  • [29] TRAVELING WAVES IN THE BUFFERED FITZHUGH-NAGUMO MODEL
    Tsai, Je-Chiang
    Sneyd, James
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2011, 71 (05) : 1606 - 1636
  • [30] An analysis of the reliability phenomenon in the FitzHugh-Nagumo model
    Kosmidis, EK
    Pakdaman, K
    [J]. JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2003, 14 (01) : 5 - 22