On a Kinetic Fitzhugh-Nagumo Model of Neuronal Network

被引:35
|
作者
Mischler, S. [1 ,2 ]
Quininao, C. [3 ,4 ]
Touboul, J. [4 ,5 ]
机构
[1] Univ Paris 09, Pl Marechal Lattre de Tassigny, F-75775 Paris 16, France
[2] CNRS, IUFCEREMADE, UMR 7534, Pl Marechal Lattre de Tassigny, F-75775 Paris 16, France
[3] Univ Paris 06, Lab Jacques Louis Lions, CNRS, UMR 7598, 4 Pl Jussieu, F-75005 Paris, France
[4] CIRB Coll France, Math Neurosci Team, 11 Pl Marcelin Berthelot, F-75005 Paris, France
[5] CIRB Coll France, INRIA Paris Rocquencourt, Mycenae Team, 11 Pl Marcelin Berthelot, F-75005 Paris, France
关键词
MATHEMATICAL-THEORY; DYNAMICS; OSCILLATIONS; INTEGRATE; EQUATION; SYSTEM;
D O I
10.1007/s00220-015-2556-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate existence and uniqueness of solutions of a McKean-Vlasov evolution PDE representing the macroscopic behaviour of interacting Fitzhugh-Nagumo neurons. This equation is hypoelliptic, nonlocal and has unbounded coefficients. We prove existence of a solution to the evolution equation and non trivial stationary solutions. Moreover, we demonstrate uniqueness of the stationary solution in the weakly nonlinear regime. Eventually, using a semigroup factorisation method, we show exponential nonlinear stability in the small connectivity regime.
引用
收藏
页码:1001 / 1042
页数:42
相关论文
共 50 条
  • [1] On a Kinetic Fitzhugh–Nagumo Model of Neuronal Network
    S. Mischler
    C. Quiñinao
    J. Touboul
    Communications in Mathematical Physics, 2016, 342 : 1001 - 1042
  • [2] Chimera states in a thermosensitive FitzHugh-Nagumo neuronal network
    Hussain, Iqtadar
    Ghosh, Dibakar
    Jafari, Sajad
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 410
  • [3] Determination of firing times for the stochastic Fitzhugh-Nagumo neuronal model
    Tuckwell, HC
    Rodriguez, R
    Wan, FYM
    NEURAL COMPUTATION, 2003, 15 (01) : 143 - 159
  • [4] Chaotic behavior in neural networks and FitzHugh-Nagumo neuronal model
    Mishra, D
    Yadav, A
    Kalra, PK
    NEURAL INFORMATION PROCESSING, 2004, 3316 : 868 - 873
  • [5] Multiple limit cycle bifurcations of the FitzHugh-Nagumo neuronal model
    Gaiko, Valery A.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (18) : 7532 - 7542
  • [6] Spatiotemporal dynamics of a modified FitzHugh-Nagumo neuronal network with time delays
    Ji, Yansu
    Mao, Xiaochen
    NONLINEAR DYNAMICS, 2024, 112 (09) : 7571 - 7582
  • [7] Spike transitions in the FitzHugh-Nagumo model
    Biscari, P.
    Lelli, C.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2011, 126 (02): : 1 - 9
  • [8] Global bifurcations in FitzHugh-Nagumo model
    Georgescu, A
    Rocsoreanu, C
    Giurgiteanu, N
    BIFURCATION, SYMMETRY AND PATTERNS, 2003, : 197 - 202
  • [9] Turing patterns in a network-reduced FitzHugh-Nagumo model
    Carletti, Timoteo
    Nakao, Hiroya
    PHYSICAL REVIEW E, 2020, 101 (02)
  • [10] Electronic Model of FitzHugh-Nagumo Neuron
    Petrovas, A.
    Lisauskas, S.
    Slepikas, A.
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2012, 122 (06) : 117 - 120