On a Kinetic Fitzhugh-Nagumo Model of Neuronal Network

被引:35
|
作者
Mischler, S. [1 ,2 ]
Quininao, C. [3 ,4 ]
Touboul, J. [4 ,5 ]
机构
[1] Univ Paris 09, Pl Marechal Lattre de Tassigny, F-75775 Paris 16, France
[2] CNRS, IUFCEREMADE, UMR 7534, Pl Marechal Lattre de Tassigny, F-75775 Paris 16, France
[3] Univ Paris 06, Lab Jacques Louis Lions, CNRS, UMR 7598, 4 Pl Jussieu, F-75005 Paris, France
[4] CIRB Coll France, Math Neurosci Team, 11 Pl Marcelin Berthelot, F-75005 Paris, France
[5] CIRB Coll France, INRIA Paris Rocquencourt, Mycenae Team, 11 Pl Marcelin Berthelot, F-75005 Paris, France
关键词
MATHEMATICAL-THEORY; DYNAMICS; OSCILLATIONS; INTEGRATE; EQUATION; SYSTEM;
D O I
10.1007/s00220-015-2556-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate existence and uniqueness of solutions of a McKean-Vlasov evolution PDE representing the macroscopic behaviour of interacting Fitzhugh-Nagumo neurons. This equation is hypoelliptic, nonlocal and has unbounded coefficients. We prove existence of a solution to the evolution equation and non trivial stationary solutions. Moreover, we demonstrate uniqueness of the stationary solution in the weakly nonlinear regime. Eventually, using a semigroup factorisation method, we show exponential nonlinear stability in the small connectivity regime.
引用
收藏
页码:1001 / 1042
页数:42
相关论文
共 50 条
  • [41] Dynamics of moments of FitzHugh-Nagumo neuronal models and stochastic bifurcations
    Tanabe, S
    Pakdaman, K
    PHYSICAL REVIEW E, 2001, 63 (03): : 031911 - 031911
  • [42] Synchronization and chimeras in a network of photosensitive FitzHugh-Nagumo neurons
    Hussain, Iqtadar
    Jafari, Sajad
    Ghosh, Dibakar
    Perc, Matjaz
    NONLINEAR DYNAMICS, 2021, 104 (03) : 2711 - 2721
  • [43] Mean field modeling of the fitzhugh-nagumo neuronal network model with kernel functions and time-delayed couplings
    Garliauskas, A. (algis.garliauskas@vu.mii.lt), 1600, IOS Press BV (24):
  • [44] Analysis of a FitzHugh-Nagumo-Rall model of a neuronal network
    Cardanobile, Stefano
    Mugnolo, Delio
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2007, 30 (18) : 2281 - 2308
  • [45] Fluidic FitzHugh-Nagumo oscillator
    Fromm, Matthias
    Grundmann, Sven
    Seifert, Avraham
    PHYSICS OF FLUIDS, 2025, 37 (02)
  • [46] Mean Field Modeling of the FitzHugh-Nagumo Neuronal Network Model with Kernel Functions and Time-Delayed Couplings
    Garliauskas, Algis
    INFORMATICA, 2013, 24 (03) : 395 - 411
  • [47] Viscoelastic Fitzhugh-Nagumo models
    Bini, D
    Cherubini, C
    Filippi, S
    PHYSICAL REVIEW E, 2005, 72 (04):
  • [48] Toward heterogeneity in feedforward network with synaptic delays based on FitzHugh-Nagumo model
    Qin, Ying-Mei
    Men, Cong
    Zhao, Jia
    Han, Chun-Xiao
    Che, Yan-Qiu
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2018, 32 (01):
  • [49] A generalized Fitzhugh-Nagumo equation
    Browne, P.
    Momoniat, E.
    Mahomed, F. M.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (04) : 1006 - 1015
  • [50] COMPENSATOR DESIGN FOR THE MONODOMAIN EQUATIONS WITH THE FITZHUGH-NAGUMO MODEL
    Breiten, Tobias
    Kunisch, Karl
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2017, 23 (01) : 241 - 262