Microscopic model for FitzHugh-Nagumo dynamics

被引:25
|
作者
Malevanets, A
Kapral, R
机构
[1] Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, ON
来源
PHYSICAL REVIEW E | 1997年 / 55卷 / 05期
关键词
D O I
10.1103/PhysRevE.55.5657
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A microscopic reaction model with a FitzHugh-Nagumo mass action law is introduced. A Markov chain that uses a birth-death description of the reaction mechanism and a random walk model for diffusion is constructed and implemented as a lattice-gas automaton. It is shown that the local particle density probability distribution is binomial in the high diffusion limit and the average particle density is governed by the FitzHugh-Nagumo reaction-diffusion equation. The lattice-gas simulations are able to reproduce phenomena such as labyrinthine patterns and Bloch fronts predicted to exist on the basis of the reaction-diffusion equation. The effects of fluctuations on these chemical patterns, the breakdown of the mass-action and reaction-diffusion descriptions, and the existence of phase transitions in the strong reaction limit are discussed.
引用
收藏
页码:5657 / 5670
页数:14
相关论文
共 50 条
  • [41] CNN model for studying dynamics and travelling wave solutions of FitzHugh-Nagumo equation
    Slavova, A
    Zecca, P
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 151 (01) : 13 - 24
  • [42] A generalized Fitzhugh-Nagumo equation
    Browne, P.
    Momoniat, E.
    Mahomed, F. M.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (04) : 1006 - 1015
  • [43] Digital multiplierless implementation of the biological FitzHugh-Nagumo model
    Nouri, M.
    Karimi, Gh. R.
    Ahmadi, A.
    Abbott, D.
    [J]. NEUROCOMPUTING, 2015, 165 : 468 - 476
  • [44] COMPENSATOR DESIGN FOR THE MONODOMAIN EQUATIONS WITH THE FITZHUGH-NAGUMO MODEL
    Breiten, Tobias
    Kunisch, Karl
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2017, 23 (01) : 241 - 262
  • [45] Parameters Analysis of FitzHugh-Nagumo Model for a Reliable Simulation
    Xu, B.
    Binczak, S.
    Jacquir, S.
    Pont, O.
    Yahia, H.
    [J]. 2014 36TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2014, : 4334 - 4337
  • [46] Coherence resonance in propagating spikes in FitzHugh-Nagumo model
    Horikawa, Y
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2001, E84A (06): : 1593 - 1596
  • [47] Investigation of Microcontroller Based Model of FitzHugh-Nagumo Neuron
    Petrovas, Andrius
    Lisauskas, Saulius
    Slepikas, Alvydas
    [J]. PROCEEDINGS OF 15TH INTERNATIONAL CONFERENCE ON MECHATRONICS - MECHATRONIKA 2012, 2012, : 230 - 233
  • [48] Funnel control for the monodomain equations with the FitzHugh-Nagumo model
    Berger, Thomas
    Breiten, Tobias
    Puche, Marc
    Reis, Timo
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 286 : 164 - 214
  • [49] Realistic model of compact VLSI FitzHugh-Nagumo oscillators
    Cosp, Jordi
    Binczak, Stephane
    Madrenas, Jordi
    Fernandez, Daniel
    [J]. INTERNATIONAL JOURNAL OF ELECTRONICS, 2014, 101 (02) : 220 - 230
  • [50] Solitary Wave Dynamics Governed by the Modified FitzHugh-Nagumo Equation
    Gawlik, Aleksandra
    Vladimirov, Vsevolod
    Skurativskyi, Sergii
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2020, 15 (06):