MICROCONTROLLER BASED MODEL OF FITZHUGH-NAGUMO SYSTEM

被引:0
|
作者
Petrovas, Andrius [1 ]
Lisauskas, Saulius [1 ]
Slepikas, Alvydas [1 ]
机构
[1] Vilnius Gediminas Tech Univ, Vilnius, Lithuania
关键词
dynamical system; neuron; hardware model; FitzHugh-Nagumo model; microcontroller;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For investigation into neurodynamical systems FitzHugh-Nagumo model is often suggested. The network of that models can be used for modeling of the brain processes and because of that investigation and development of those models have a great importance. Modeling of an entire network of FitzHugh-Nagumo neurons using numerical simulation requires a lot of calculation resources and time therefore hardware models are proposed. Usually the electronic FitzHugh-Nagumo models are used. The article discuses the microcontroller based model of the FitzHugh-Nagumo neuron.
引用
收藏
页码:78 / +
页数:2
相关论文
共 50 条
  • [1] Investigation of Microcontroller Based Model of FitzHugh-Nagumo Neuron
    Petrovas, Andrius
    Lisauskas, Saulius
    Slepikas, Alvydas
    [J]. PROCEEDINGS OF 15TH INTERNATIONAL CONFERENCE ON MECHATRONICS - MECHATRONIKA 2012, 2012, : 230 - 233
  • [2] Spike transitions in the FitzHugh-Nagumo model
    Biscari, P.
    Lelli, C.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2011, 126 (02): : 1 - 9
  • [3] FITZHUGH-NAGUMO EQUATIONS ARE A GRADIENT SYSTEM
    MORNEV, OA
    PANFILOV, AV
    ALIEV, RR
    [J]. BIOFIZIKA, 1992, 37 (01): : 123 - 125
  • [4] Global bifurcations in FitzHugh-Nagumo model
    Georgescu, A
    Rocsoreanu, C
    Giurgiteanu, N
    [J]. BIFURCATION, SYMMETRY AND PATTERNS, 2003, : 197 - 202
  • [5] Clustered spots in the FitzHugh-Nagumo system
    Wei, JC
    Winter, M
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 213 (01) : 121 - 145
  • [6] Electronic Model of FitzHugh-Nagumo Neuron
    Petrovas, A.
    Lisauskas, S.
    Slepikas, A.
    [J]. ELEKTRONIKA IR ELEKTROTECHNIKA, 2012, 122 (06) : 117 - 120
  • [7] Lateral overdetermination of the FitzHugh-Nagumo system
    Cox, S
    Wagner, A
    [J]. INVERSE PROBLEMS, 2004, 20 (05) : 1639 - 1647
  • [8] Microscopic model for FitzHugh-Nagumo dynamics
    Malevanets, A
    Kapral, R
    [J]. PHYSICAL REVIEW E, 1997, 55 (05): : 5657 - 5670
  • [9] The stabilization of coupled FitzHugh-Nagumo system
    Yu, Xin
    Wang, Renzhi
    [J]. 2010 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-5, 2010, : 875 - 877
  • [10] Bifurcations of FitzHugh-Nagumo (FHN) System
    Ongay Larios, Fernando
    Agueero Granados, Maximo Augusto
    [J]. CIENCIA ERGO-SUM, 2010, 17 (03) : 295 - 306