Random-Cluster Dynamics on Random Regular Graphs in Tree Uniqueness

被引:10
|
作者
Blanca, Antonio [1 ]
Gheissari, Reza [2 ,3 ]
机构
[1] Penn State Univ, Dept CSE, University Pk, PA 16802 USA
[2] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, EECS, Berkeley, CA 94720 USA
关键词
SWENDSEN-WANG; PHASE-TRANSITION; GLAUBER DYNAMICS; MODEL;
D O I
10.1007/s00220-021-04093-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We establish rapid mixing of the random-cluster Glauber dynamics on random Delta-regular graphs for all q >= 1 and p<pu(q,Delta), where the threshold pu(q,Delta) corresponds to a uniqueness/non-uniqueness phase transition for the random-cluster model on the (infinite) Delta-regular tree. It is expected that this threshold is sharp, and for q>2 the Glauber dynamics on random Delta-regular graphs undergoes an exponential slowdown at pu(q,Delta). More precisely, we show that for every q >= 1, Delta >= 3, and p<pu(q,Delta), with probability 1-o(1) over the choice of a random Delta-regular graph on n vertices, the Glauber dynamics for the random-cluster model has Theta(nlogn) mixing time. As a corollary, we deduce fast mixing of the Swendsen-Wang dynamics for the Potts model on random Delta-regular graphs for every q >= 2, in the tree uniqueness region. Our proof relies on a sharp bound on the "shattering time", i.e., the number of steps required to break up any configuration into O(logn) sized clusters. This is established by analyzing a delicate and novel iterative scheme to simultaneously reveal the underlying random graph with clusters of the Glauber dynamics configuration on it, at a given time.
引用
收藏
页码:1243 / 1287
页数:45
相关论文
共 50 条
  • [41] Random-Cluster Correlation Inequalities for Gibbs Fields
    Alberto Gandolfi
    Journal of Statistical Physics, 2018, 173 : 249 - 267
  • [42] MINIMAL SPANNING TREE ANALYSIS OF REGULAR, RANDOM AND CLUSTER STRUCTURES
    DUSSERT, C
    RASIGNI, G
    RASIGNI, M
    PALMARI, J
    LLEBARIA, A
    ZEITSCHRIFT FUR PHYSIK D-ATOMS MOLECULES AND CLUSTERS, 1989, 12 (1-4): : 41 - 44
  • [43] Information percolation and cutoff for the random-cluster model
    Ganguly, Shirshendu
    Seo, Insuk
    RANDOM STRUCTURES & ALGORITHMS, 2020, 57 (03) : 770 - 822
  • [44] Random-Cluster Representation of the Blume–Capel Model
    B. T. Graham
    G. R. Grimmett
    Journal of Statistical Physics, 2006, 125 : 283 - 316
  • [45] Random-Cluster Correlation Inequalities for Gibbs Fields
    Gandolfi, Alberto
    JOURNAL OF STATISTICAL PHYSICS, 2018, 173 (02) : 249 - 267
  • [46] Random-Cluster Analysis of a Class of Binary Lattice Gases
    Olle Häggström
    Journal of Statistical Physics, 1998, 91 : 47 - 74
  • [47] Colouring random regular graphs
    Shi, Lingsheng
    Wormald, Nicholas
    COMBINATORICS PROBABILITY & COMPUTING, 2007, 16 (03): : 459 - 494
  • [48] Generating random regular graphs
    Kim, J. H.
    Vu, V. H.
    COMBINATORICA, 2006, 26 (06) : 683 - 708
  • [49] Minors in Random Regular Graphs
    Fountoulakis, Nikolaos
    Kuehn, Daniela
    Osthus, Deryk
    RANDOM STRUCTURES & ALGORITHMS, 2009, 35 (04) : 444 - 463
  • [50] Random Matchings in Regular Graphs
    Jeff Kahn
    Jeong Han Kim
    Combinatorica, 1998, 18 : 201 - 226