Random-Cluster Dynamics on Random Regular Graphs in Tree Uniqueness

被引:10
|
作者
Blanca, Antonio [1 ]
Gheissari, Reza [2 ,3 ]
机构
[1] Penn State Univ, Dept CSE, University Pk, PA 16802 USA
[2] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, EECS, Berkeley, CA 94720 USA
关键词
SWENDSEN-WANG; PHASE-TRANSITION; GLAUBER DYNAMICS; MODEL;
D O I
10.1007/s00220-021-04093-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We establish rapid mixing of the random-cluster Glauber dynamics on random Delta-regular graphs for all q >= 1 and p<pu(q,Delta), where the threshold pu(q,Delta) corresponds to a uniqueness/non-uniqueness phase transition for the random-cluster model on the (infinite) Delta-regular tree. It is expected that this threshold is sharp, and for q>2 the Glauber dynamics on random Delta-regular graphs undergoes an exponential slowdown at pu(q,Delta). More precisely, we show that for every q >= 1, Delta >= 3, and p<pu(q,Delta), with probability 1-o(1) over the choice of a random Delta-regular graph on n vertices, the Glauber dynamics for the random-cluster model has Theta(nlogn) mixing time. As a corollary, we deduce fast mixing of the Swendsen-Wang dynamics for the Potts model on random Delta-regular graphs for every q >= 2, in the tree uniqueness region. Our proof relies on a sharp bound on the "shattering time", i.e., the number of steps required to break up any configuration into O(logn) sized clusters. This is established by analyzing a delicate and novel iterative scheme to simultaneously reveal the underlying random graph with clusters of the Glauber dynamics configuration on it, at a given time.
引用
收藏
页码:1243 / 1287
页数:45
相关论文
共 50 条
  • [31] Rigidity of the interface in percolation and random-cluster models
    Gielis, G
    Grimmett, G
    JOURNAL OF STATISTICAL PHYSICS, 2002, 109 (1-2) : 1 - 37
  • [32] Coupling and Bernoullicity in random-cluster and Potts models
    Häggström, O
    Jonasson, J
    Lyons, R
    BERNOULLI, 2002, 8 (03) : 275 - 294
  • [33] SHARP THRESHOLDS FOR THE RANDOM-CLUSTER AND ISING MODELS
    Graham, Benjamin
    Grimmett, Geoffrey
    ANNALS OF APPLIED PROBABILITY, 2011, 21 (01): : 240 - 265
  • [34] Planar random-cluster model: scaling relations
    Duminil-Copin, Hugo
    Manolescu, Ioan
    FORUM OF MATHEMATICS PI, 2022, 10
  • [35] Random regular graphs and the systole of a random surface
    Petri, Bram
    JOURNAL OF TOPOLOGY, 2017, 10 (01) : 211 - 267
  • [36] MULTIPLE RANDOM WALKS IN RANDOM REGULAR GRAPHS
    Cooper, Colin
    Frieze, Alan
    Radzik, Tomasz
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (04) : 1738 - 1761
  • [37] Sandwiching random regular graphs between binomial random graphs
    Gao, Pu
    Isaev, Mikhail
    McKay, Brendan D.
    PROCEEDINGS OF THE 2020 ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2020, : 690 - 701
  • [38] Sandwiching random regular graphs between binomial random graphs
    Gao, Pu
    Isaev, Mikhail
    McKay, Brendan D.
    PROCEEDINGS OF THE THIRTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA'20), 2020, : 690 - 701
  • [39] Branching processes, and random-cluster measures on trees
    Grimmett, G
    Janson, S
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2005, 7 (02) : 253 - 281
  • [40] Random-Cluster Representation for the Blume–Capel Model
    M. B. Bouabci
    C. E. I. Carneiro
    Journal of Statistical Physics, 2000, 100 : 805 - 827