Random-Cluster Dynamics on Random Regular Graphs in Tree Uniqueness

被引:10
|
作者
Blanca, Antonio [1 ]
Gheissari, Reza [2 ,3 ]
机构
[1] Penn State Univ, Dept CSE, University Pk, PA 16802 USA
[2] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, EECS, Berkeley, CA 94720 USA
关键词
SWENDSEN-WANG; PHASE-TRANSITION; GLAUBER DYNAMICS; MODEL;
D O I
10.1007/s00220-021-04093-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We establish rapid mixing of the random-cluster Glauber dynamics on random Delta-regular graphs for all q >= 1 and p<pu(q,Delta), where the threshold pu(q,Delta) corresponds to a uniqueness/non-uniqueness phase transition for the random-cluster model on the (infinite) Delta-regular tree. It is expected that this threshold is sharp, and for q>2 the Glauber dynamics on random Delta-regular graphs undergoes an exponential slowdown at pu(q,Delta). More precisely, we show that for every q >= 1, Delta >= 3, and p<pu(q,Delta), with probability 1-o(1) over the choice of a random Delta-regular graph on n vertices, the Glauber dynamics for the random-cluster model has Theta(nlogn) mixing time. As a corollary, we deduce fast mixing of the Swendsen-Wang dynamics for the Potts model on random Delta-regular graphs for every q >= 2, in the tree uniqueness region. Our proof relies on a sharp bound on the "shattering time", i.e., the number of steps required to break up any configuration into O(logn) sized clusters. This is established by analyzing a delicate and novel iterative scheme to simultaneously reveal the underlying random graph with clusters of the Glauber dynamics configuration on it, at a given time.
引用
收藏
页码:1243 / 1287
页数:45
相关论文
共 50 条
  • [21] Efficient simulation of the random-cluster model
    Elci, Eren Metin
    Weigel, Martin
    PHYSICAL REVIEW E, 2013, 88 (03)
  • [22] The random-cluster model on the complete graph
    Bollobas, B
    Grimmett, G
    Janson, S
    PROBABILITY THEORY AND RELATED FIELDS, 1996, 104 (03) : 283 - 317
  • [23] Connectivity properties of the random-cluster model
    Weigel, Martin
    Elci, Eren Metin
    Fytas, Nikolaos G.
    INTERNATIONAL CONFERENCE ON COMPUTER SIMULATION IN PHYSICS AND BEYOND 2015, 2016, 681
  • [24] On the asymmetry of random regular graphs and random graphs
    Kim, JH
    Sudakov, B
    Vu, VH
    RANDOM STRUCTURES & ALGORITHMS, 2002, 21 (3-4) : 216 - 224
  • [25] Crossing bonds in the random-cluster model
    Guo, Wenan
    Deng, Youjin
    Blote, Henk W. J.
    PHYSICAL REVIEW E, 2009, 79 (06):
  • [26] The random transposition dynamics on random regular graphs and the Gaussian free field
    Ganguly, Shirshendu
    Pal, Soumik
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (04): : 2935 - 2970
  • [27] Critical speeding-up in the local dynamics of the random-cluster model
    Deng, Youjin
    Garoni, Timothy M.
    Sokal, Alan D.
    PHYSICAL REVIEW LETTERS, 2007, 98 (23)
  • [28] Decay of correlations in random-cluster models
    Grimmett, GR
    Piza, MST
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 189 (02) : 465 - 480
  • [29] The random-cluster model on the complete graph
    Probab Theory Relat Fields, 3 (283):
  • [30] Rigidity of the Interface in Percolation and Random-Cluster Models
    Guy Gielis
    Geoffrey Grimmett
    Journal of Statistical Physics, 2002, 109 : 1 - 37