Critical speeding-up in the local dynamics of the random-cluster model

被引:19
|
作者
Deng, Youjin
Garoni, Timothy M.
Sokal, Alan D.
机构
[1] NYU, Dept Phys, New York, NY 10003 USA
[2] UCL, Dept Math, London WC1E 6BT, England
关键词
D O I
10.1103/PhysRevLett.98.230602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the dynamic critical behavior of the local bond-update (Sweeny) dynamics for the Fortuin-Kasteleyn random-cluster model in dimensions d=2, 3 by Monte Carlo simulation. We show that, for a suitable range of q values, the global observable S-2 exhibits "critical speeding-up": it decorrelates well on time scales much less than one sweep. In some cases the dynamic critical exponent for the integrated autocorrelation time is negative. We also show that the dynamic critical exponent z(exp) is very close (possibly equal) to the rigorous lower bound alpha/nu and quite possibly smaller than the corresponding exponent for the Chayes-Machta-Swendsen-Wang cluster dynamics.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Single-cluster dynamics for the random-cluster model
    Deng, Youjin
    Qian, Xiaofeng
    Bloete, Henk W. J.
    PHYSICAL REVIEW E, 2009, 80 (03):
  • [2] Critical speeding-up in dynamical percolation
    Elci, Eren Metin
    Garoni, Timothy M.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2024, 2024 (07):
  • [3] RANDOM-CLUSTER MODEL .3. SIMPLE RANDOM-CLUSTER MODEL
    FORTUIN, CM
    PHYSICA, 1972, 59 (04): : 545 - &
  • [4] Sweeny dynamics for the random-cluster model with small Q
    Peng, Zirui
    Elci, Eren Metin
    Deng, Youjin
    Hu, Hao
    PHYSICAL REVIEW E, 2023, 108 (05)
  • [5] Some geometric critical exponents for percolation and the random-cluster model
    Deng, Youjin
    Zhang, Wei
    Garoni, Timothy M.
    Sokal, Alan D.
    Sportiello, Andrea
    PHYSICAL REVIEW E, 2010, 81 (02):
  • [6] Planar random-cluster model: fractal properties of the critical phase
    Duminil-Copin, Hugo
    Manolescu, Ioan
    Tassion, Vincent
    PROBABILITY THEORY AND RELATED FIELDS, 2021, 181 (1-3) : 401 - 449
  • [7] Bridges in the random-cluster model
    Elci, Eren Metin
    Weigel, Martin
    Fytas, Nikolaos G.
    NUCLEAR PHYSICS B, 2016, 903 : 19 - 50
  • [8] Planar random-cluster model: fractal properties of the critical phase
    Hugo Duminil-Copin
    Ioan Manolescu
    Vincent Tassion
    Probability Theory and Related Fields, 2021, 181 : 401 - 449
  • [9] THE THERMO-ACOUSTIC NATURE OF THE CRITICAL SPEEDING-UP
    ZAPPOLI, B
    CARLES, P
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 1995, 14 (01) : 41 - 65
  • [10] On the critical parameters of the q ≤ 4 random-cluster model on isoradial graphs
    Beffara, V.
    Duminil-Copin, H.
    Smirnov, S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (48)