Critical speeding-up in the local dynamics of the random-cluster model

被引:19
|
作者
Deng, Youjin
Garoni, Timothy M.
Sokal, Alan D.
机构
[1] NYU, Dept Phys, New York, NY 10003 USA
[2] UCL, Dept Math, London WC1E 6BT, England
关键词
D O I
10.1103/PhysRevLett.98.230602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the dynamic critical behavior of the local bond-update (Sweeny) dynamics for the Fortuin-Kasteleyn random-cluster model in dimensions d=2, 3 by Monte Carlo simulation. We show that, for a suitable range of q values, the global observable S-2 exhibits "critical speeding-up": it decorrelates well on time scales much less than one sweep. In some cases the dynamic critical exponent for the integrated autocorrelation time is negative. We also show that the dynamic critical exponent z(exp) is very close (possibly equal) to the rigorous lower bound alpha/nu and quite possibly smaller than the corresponding exponent for the Chayes-Machta-Swendsen-Wang cluster dynamics.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Spatial mixing and the random-cluster dynamics on lattices
    Gheissari, Reza
    Sinclair, Alistair
    PROCEEDINGS OF THE 2023 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2023, : 4606 - 4621
  • [22] Random-Cluster Dynamics on Random Regular Graphs in Tree Uniqueness
    Antonio Blanca
    Reza Gheissari
    Communications in Mathematical Physics, 2021, 386 : 1243 - 1287
  • [23] Spatial mixing and the random-cluster dynamics on lattices
    Gheissari, Reza
    Sinclair, Alistair
    RANDOM STRUCTURES & ALGORITHMS, 2024, 64 (02) : 490 - 534
  • [24] Universality for the random-cluster model on isoradial graphs
    Duminil-Copin, Hugo
    Li, Jhih-Huang
    Manolescu, Ioan
    ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
  • [25] A new computation of the critical point for the planar random-cluster model with q ≥ 1
    Duminil-Copin, Hugo
    Raoufi, Aran
    Tassion, Vincent
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2018, 54 (01): : 422 - 436
  • [26] Planar random-cluster model: scaling relations
    Duminil-Copin, Hugo
    Manolescu, Ioan
    FORUM OF MATHEMATICS PI, 2022, 10
  • [27] Random-Cluster Representation for the Blume–Capel Model
    M. B. Bouabci
    C. E. I. Carneiro
    Journal of Statistical Physics, 2000, 100 : 805 - 827
  • [28] RANDOM-CLUSTER MODEL .2. PERCOLATION MODEL
    FORTUIN, CM
    PHYSICA, 1972, 58 (03): : 393 - &
  • [29] Information percolation and cutoff for the random-cluster model
    Ganguly, Shirshendu
    Seo, Insuk
    RANDOM STRUCTURES & ALGORITHMS, 2020, 57 (03) : 770 - 822
  • [30] Random-Cluster Representation of the Blume–Capel Model
    B. T. Graham
    G. R. Grimmett
    Journal of Statistical Physics, 2006, 125 : 283 - 316