Planar random-cluster model: scaling relations

被引:5
|
作者
Duminil-Copin, Hugo [1 ,2 ]
Manolescu, Ioan [3 ]
机构
[1] Univ Geneva, 7 9 Rue du Conseil Gen, CH-1205 Geneva, Switzerland
[2] Inst Hautes Etud Sci, 35 Route Chartres, F-91440 Bures Sur Yvette, France
[3] Univ Fribourg, Dept Math, 23 Chemin Musee, CH-1700 Fribourg, Switzerland
来源
FORUM OF MATHEMATICS PI | 2022年 / 10卷
关键词
60K35; CRITICAL PERCOLATION; CROSSING PROBABILITIES; CONFORMAL-INVARIANCE; CRITICAL EXPONENTS; PHASE-TRANSITION; DECISION TREE; POTTS MODELS; RENORMALIZATION; LIMITS; POINT;
D O I
10.1017/fmp.2022.16
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the critical and near-critical regimes of the planar random-cluster model on Z2 with cluster-weight ?? is an element of [1,4] using novel coupling techniques. More precisely, we derive the scaling relations between the critical exponents ??, ??, ??, ??, ??, ?? as well as ?? (when?? >= 0 ). As a key input, we show the stability of crossing probabilities in the near-critical regime using new interpretations of the notion of the influence of an edge in terms of the rate of mixing. As a byproduct, we derive a generalisation of Kesten's classical scaling relation for Bernoulli percolation involving the "mixing rate' critical exponent??replacing the four-arm event exponent ??4.
引用
收藏
页数:83
相关论文
共 50 条
  • [1] RENORMALIZATION OF CROSSING PROBABILITIES IN THE PLANAR RANDOM-CLUSTER MODEL
    Duminil-Copin, Hugo
    Tassion, Vincent
    MOSCOW MATHEMATICAL JOURNAL, 2020, 20 (04) : 711 - 740
  • [2] RANDOM-CLUSTER MODEL .3. SIMPLE RANDOM-CLUSTER MODEL
    FORTUIN, CM
    PHYSICA, 1972, 59 (04): : 545 - &
  • [3] Planar random-cluster model: fractal properties of the critical phase
    Duminil-Copin, Hugo
    Manolescu, Ioan
    Tassion, Vincent
    PROBABILITY THEORY AND RELATED FIELDS, 2021, 181 (1-3) : 401 - 449
  • [4] Planar random-cluster model: fractal properties of the critical phase
    Hugo Duminil-Copin
    Ioan Manolescu
    Vincent Tassion
    Probability Theory and Related Fields, 2021, 181 : 401 - 449
  • [5] Bridges in the random-cluster model
    Elci, Eren Metin
    Weigel, Martin
    Fytas, Nikolaos G.
    NUCLEAR PHYSICS B, 2016, 903 : 19 - 50
  • [6] Efficient simulation of the random-cluster model
    Elci, Eren Metin
    Weigel, Martin
    PHYSICAL REVIEW E, 2013, 88 (03)
  • [7] The random-cluster model on the complete graph
    Bollobas, B
    Grimmett, G
    Janson, S
    PROBABILITY THEORY AND RELATED FIELDS, 1996, 104 (03) : 283 - 317
  • [8] Connectivity properties of the random-cluster model
    Weigel, Martin
    Elci, Eren Metin
    Fytas, Nikolaos G.
    INTERNATIONAL CONFERENCE ON COMPUTER SIMULATION IN PHYSICS AND BEYOND 2015, 2016, 681
  • [9] Crossing bonds in the random-cluster model
    Guo, Wenan
    Deng, Youjin
    Blote, Henk W. J.
    PHYSICAL REVIEW E, 2009, 79 (06):
  • [10] The stochastic random-cluster process and the uniqueness of random-cluster measures
    Grimmett, G
    ANNALS OF PROBABILITY, 1995, 23 (04): : 1461 - 1510