Planar random-cluster model: scaling relations

被引:5
|
作者
Duminil-Copin, Hugo [1 ,2 ]
Manolescu, Ioan [3 ]
机构
[1] Univ Geneva, 7 9 Rue du Conseil Gen, CH-1205 Geneva, Switzerland
[2] Inst Hautes Etud Sci, 35 Route Chartres, F-91440 Bures Sur Yvette, France
[3] Univ Fribourg, Dept Math, 23 Chemin Musee, CH-1700 Fribourg, Switzerland
来源
FORUM OF MATHEMATICS PI | 2022年 / 10卷
关键词
60K35; CRITICAL PERCOLATION; CROSSING PROBABILITIES; CONFORMAL-INVARIANCE; CRITICAL EXPONENTS; PHASE-TRANSITION; DECISION TREE; POTTS MODELS; RENORMALIZATION; LIMITS; POINT;
D O I
10.1017/fmp.2022.16
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the critical and near-critical regimes of the planar random-cluster model on Z2 with cluster-weight ?? is an element of [1,4] using novel coupling techniques. More precisely, we derive the scaling relations between the critical exponents ??, ??, ??, ??, ??, ?? as well as ?? (when?? >= 0 ). As a key input, we show the stability of crossing probabilities in the near-critical regime using new interpretations of the notion of the influence of an edge in terms of the rate of mixing. As a byproduct, we derive a generalisation of Kesten's classical scaling relation for Bernoulli percolation involving the "mixing rate' critical exponent??replacing the four-arm event exponent ??4.
引用
收藏
页数:83
相关论文
共 50 条
  • [21] A Short Proof of the Discontinuity of Phase Transition in the Planar Random-Cluster Model with q > 4
    Ray, Gourab
    Spinka, Yinon
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 378 (03) : 1977 - 1988
  • [22] ELECTRONIC-PROPERTIES IN THE INTERACTION RANDOM-CLUSTER MODEL
    CHEN, XS
    ZHAO, JJ
    SUN, QA
    WANG, GH
    PHYSICS LETTERS A, 1995, 204 (02) : 169 - 173
  • [23] Random-cluster representation of the Ashkin-Teller model
    Pfister, CE
    Velenik, Y
    JOURNAL OF STATISTICAL PHYSICS, 1997, 88 (5-6) : 1295 - 1331
  • [24] Random-cluster representation for the Blume-Capel model
    Bouabci, MB
    Carneiro, CEI
    JOURNAL OF STATISTICAL PHYSICS, 2000, 100 (5-6) : 805 - 827
  • [25] Random-cluster representation of the ashkin-teller model
    C. -E. Pfister
    Y. Velenik
    Journal of Statistical Physics, 1997, 88 : 1295 - 1331
  • [26] Sweeny dynamics for the random-cluster model with small Q
    Peng, Zirui
    Elci, Eren Metin
    Deng, Youjin
    Hu, Hao
    PHYSICAL REVIEW E, 2023, 108 (05)
  • [27] Random-cluster representation of the Blume-Capel model
    Graham, B. T.
    Grimmett, G. R.
    JOURNAL OF STATISTICAL PHYSICS, 2006, 125 (02) : 287 - 320
  • [28] Almost sure quasilocality fails for the random-cluster model on a tree
    Haggstrom, O
    JOURNAL OF STATISTICAL PHYSICS, 1996, 84 (5-6) : 1351 - 1361
  • [29] Explicit isoperimetric constants and phase transitions in the random-cluster model
    Häggström, O
    Jonasson, J
    Lyons, R
    ANNALS OF PROBABILITY, 2002, 30 (01): : 443 - 473
  • [30] Some geometric critical exponents for percolation and the random-cluster model
    Deng, Youjin
    Zhang, Wei
    Garoni, Timothy M.
    Sokal, Alan D.
    Sportiello, Andrea
    PHYSICAL REVIEW E, 2010, 81 (02):