Critical speeding-up in the local dynamics of the random-cluster model

被引:19
|
作者
Deng, Youjin
Garoni, Timothy M.
Sokal, Alan D.
机构
[1] NYU, Dept Phys, New York, NY 10003 USA
[2] UCL, Dept Math, London WC1E 6BT, England
关键词
D O I
10.1103/PhysRevLett.98.230602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the dynamic critical behavior of the local bond-update (Sweeny) dynamics for the Fortuin-Kasteleyn random-cluster model in dimensions d=2, 3 by Monte Carlo simulation. We show that, for a suitable range of q values, the global observable S-2 exhibits "critical speeding-up": it decorrelates well on time scales much less than one sweep. In some cases the dynamic critical exponent for the integrated autocorrelation time is negative. We also show that the dynamic critical exponent z(exp) is very close (possibly equal) to the rigorous lower bound alpha/nu and quite possibly smaller than the corresponding exponent for the Chayes-Machta-Swendsen-Wang cluster dynamics.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Quench Dynamics of One-Dimensional Interacting Bosons in a Disordered Potential: Elastic Dephasing and Critical Speeding-Up of Thermalization
    Tavora, Marco
    Rosch, Achim
    Mitra, Aditi
    PHYSICAL REVIEW LETTERS, 2014, 113 (01)
  • [42] Percolation of the site random-cluster model by Monte Carlo method
    Wang, Songsong
    Zhang, Wanzhou
    Ding, Chengxiang
    PHYSICAL REVIEW E, 2015, 92 (02)
  • [43] Local and cluster critical dynamics of the 3d random-site Ising model
    Ivaneyko, D.
    Ilnytskyi, J.
    Berche, B.
    Holovatch, Yu.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 370 (02) : 163 - 178
  • [44] Speeding-up non-clausal local search for propositional satisfiability with clause learning
    Stachniak, Zbigniew
    Belov, Anton
    THEORY AND APPLICATIONS OF SATISFIABILITY TESTING - SAT 2008, PROCEEDINGS, 2008, 4996 : 257 - 270
  • [45] A measurement-based random-cluster MIMO channel model
    Czink, Nicolai
    Bonek, Ernst
    Hentilae, Lassi
    Nuutinen, Jukka-Pekka
    Ylitalo, Juha
    2007 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, VOLS 1-12, 2007, : 4887 - +
  • [47] Dynamic Critical Behavior of the Chayes–Machta Algorithm for the Random-Cluster Model, I. Two Dimensions
    Timothy M. Garoni
    Giovanni Ossola
    Marco Polin
    Alan D. Sokal
    Journal of Statistical Physics, 2011, 144 : 459 - 518
  • [48] The self-dual point of the two-dimensional random-cluster model is critical for q ≥ 1
    Vincent Beffara
    Hugo Duminil-Copin
    Probability Theory and Related Fields, 2012, 153 : 511 - 542
  • [49] The self-dual point of the two-dimensional random-cluster model is critical for q ≥ 1
    Beffara, Vincent
    Duminil-Copin, Hugo
    PROBABILITY THEORY AND RELATED FIELDS, 2012, 153 (3-4) : 511 - 542
  • [50] Simulation algorithms for the random-cluster model -: art. no. 016709
    Qian, XF
    Deng, YJ
    Blöte, HWJ
    PHYSICAL REVIEW E, 2005, 71 (01):