Random-Cluster Dynamics on Random Regular Graphs in Tree Uniqueness

被引:10
|
作者
Blanca, Antonio [1 ]
Gheissari, Reza [2 ,3 ]
机构
[1] Penn State Univ, Dept CSE, University Pk, PA 16802 USA
[2] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, EECS, Berkeley, CA 94720 USA
关键词
SWENDSEN-WANG; PHASE-TRANSITION; GLAUBER DYNAMICS; MODEL;
D O I
10.1007/s00220-021-04093-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We establish rapid mixing of the random-cluster Glauber dynamics on random Delta-regular graphs for all q >= 1 and p<pu(q,Delta), where the threshold pu(q,Delta) corresponds to a uniqueness/non-uniqueness phase transition for the random-cluster model on the (infinite) Delta-regular tree. It is expected that this threshold is sharp, and for q>2 the Glauber dynamics on random Delta-regular graphs undergoes an exponential slowdown at pu(q,Delta). More precisely, we show that for every q >= 1, Delta >= 3, and p<pu(q,Delta), with probability 1-o(1) over the choice of a random Delta-regular graph on n vertices, the Glauber dynamics for the random-cluster model has Theta(nlogn) mixing time. As a corollary, we deduce fast mixing of the Swendsen-Wang dynamics for the Potts model on random Delta-regular graphs for every q >= 2, in the tree uniqueness region. Our proof relies on a sharp bound on the "shattering time", i.e., the number of steps required to break up any configuration into O(logn) sized clusters. This is established by analyzing a delicate and novel iterative scheme to simultaneously reveal the underlying random graph with clusters of the Glauber dynamics configuration on it, at a given time.
引用
收藏
页码:1243 / 1287
页数:45
相关论文
共 50 条
  • [11] Spatial mixing and the random-cluster dynamics on lattices
    Gheissari, Reza
    Sinclair, Alistair
    RANDOM STRUCTURES & ALGORITHMS, 2024, 64 (02) : 490 - 534
  • [12] Random Cluster Model on Regular Graphs
    Bencs, Ferenc
    Borbenyi, Marton
    Csikvari, Peter
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 399 (01) : 203 - 248
  • [13] Random Cluster Model on Regular Graphs
    Ferenc Bencs
    Márton Borbényi
    Péter Csikvári
    Communications in Mathematical Physics, 2023, 399 : 203 - 248
  • [14] Almost sure quasilocality fails for the random-cluster model on a tree
    Haggstrom, O
    JOURNAL OF STATISTICAL PHYSICS, 1996, 84 (5-6) : 1351 - 1361
  • [15] Sweeny dynamics for the random-cluster model with small Q
    Peng, Zirui
    Elci, Eren Metin
    Deng, Youjin
    Hu, Hao
    PHYSICAL REVIEW E, 2023, 108 (05)
  • [17] On the critical parameters of the q ≤ 4 random-cluster model on isoradial graphs
    Beffara, V.
    Duminil-Copin, H.
    Smirnov, S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (48)
  • [18] Bridges in the random-cluster model
    Elci, Eren Metin
    Weigel, Martin
    Fytas, Nikolaos G.
    NUCLEAR PHYSICS B, 2016, 903 : 19 - 50
  • [19] Sampling from the random cluster model on random regular graphs at all temperatures via Glauber dynamics
    Galanis, Andreas
    Goldberg, Leslie Ann
    Smolarova, Paulina
    COMBINATORICS PROBABILITY AND COMPUTING, 2024,
  • [20] Decay of Correlations in Random-Cluster Models
    G.R. Grimmett
    M.S.T. Piza
    Communications in Mathematical Physics, 1997, 189 : 465 - 480