Colouring random regular graphs

被引:0
|
作者
Shi, Lingsheng [1 ]
Wormald, Nicholas [1 ]
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
来源
COMBINATORICS PROBABILITY & COMPUTING | 2007年 / 16卷 / 03期
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1017/S0963548306007954
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In a previous paper we showed that a random 4-regular graph asymptotically almost surely (a.a.s.) has chromatic number 3. Here we extend the method to show that a random 6-regular graph asymptotically almost surely (a.a.s.) has chromatic number 4 and that the chromatic number of a random d-regular graph for other d between 5 and 10 inclusive is a.a.s. restricted to a range of two integer values: {3,4} for d = 5, {4, 5} for d = 7, 8, 9, and {5,6} for d = 10. The proof uses efficient algorithms which a.a.s. colour these random graphs using the number of colours specified by the upper bound. These algorithms are analysed using the differential equation method, including an analysis of certain systems of differential equations with discontinuous right-hand sides.
引用
收藏
页码:459 / 494
页数:36
相关论文
共 50 条
  • [1] Colouring random 4-regular graphs
    Shi, Lingsheng
    Wormald, Nicholas
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2007, 16 (02): : 309 - 344
  • [2] Star colouring of bounded degree graphs and regular graphs
    Shalu, M. A.
    Antony, Cyriac
    [J]. DISCRETE MATHEMATICS, 2022, 345 (06)
  • [3] On defining numbers of vertex colouring of regular graphs
    Mahmoodian, ES
    Mendelsohn, E
    [J]. DISCRETE MATHEMATICS, 1999, 197 (1-3) : 543 - 554
  • [4] About b-colouring of regular graphs
    El Sahili, Arnine
    Kouider, Mekkia
    [J]. UTILITAS MATHEMATICA, 2009, 80 : 211 - 215
  • [5] Star Colouring of Regular Graphs Meets Weaving and Line Graphs
    Shalu, M. A.
    Antony, Cyriac
    [J]. ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2024, 2024, 14508 : 313 - 327
  • [6] EDGE-COLOURING RANDOM GRAPHS
    FRIEZE, AM
    JACKSON, B
    MCDIARMID, CJH
    REED, B
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1988, 45 (02) : 135 - 149
  • [7] On the asymmetry of random regular graphs and random graphs
    Kim, JH
    Sudakov, B
    Vu, VH
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2002, 21 (3-4) : 216 - 224
  • [8] Edge-colouring of regular graphs of large degree
    De Simone, Caterina
    Galluccio, Anna
    [J]. THEORETICAL COMPUTER SCIENCE, 2007, 389 (1-2) : 91 - 99
  • [9] Edge-colouring of joins of regular graphs, I
    Caterina De Simone
    Anna Galluccio
    [J]. Journal of Combinatorial Optimization, 2009, 18 : 417 - 428
  • [10] Edge-colouring of joins of regular graphs II
    De Simone, Caterina
    Galluccio, Anna
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2013, 25 (01) : 78 - 90