A positive fraction Erdos-Szekeres theorem

被引:44
|
作者
Barany, I
Valtr, P
机构
[1] Hungarian Acad Sci, Inst Math, H-1364 Budapest, Hungary
[2] Charles Univ, Dept Appl Math, CR-11800 Prague 1, Czech Republic
关键词
D O I
10.1007/PL00009350
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove a fractional version of the Erdos-Szekeres theorem: for any k there is a constant c(k) > 0 such that any sufficiently large finite set X subset of R-2 contains k subsets Y-1, ..., Y-k, each of size greater than or equal to c(k)\X\, such that every set {y(1), ..., y(k)} with y(i) is an element of Y-i is in convex position. The main tool is a lemma stating that any finite set X subset of R-d contains "large" subsets Y-1, ..., Y-k such that all sets {y(1), ..., y(k)} with y(i) is an element of Y-i have the same geometric (order) type, We also prove several related results (e.g., the positive fraction Radon theorem, the positive fraction Tverberg theorem).
引用
收藏
页码:335 / 342
页数:8
相关论文
共 50 条
  • [1] On the positive fraction Erdos-Szekeres theorem for convex sets
    Por, Attila
    Valtr, Pavel
    EUROPEAN JOURNAL OF COMBINATORICS, 2006, 27 (07) : 1199 - 1205
  • [2] A Positive Fraction Erdos-Szekeres Theorem and Its Applications
    Suk, Andrew
    Zeng, Ji
    DISCRETE & COMPUTATIONAL GEOMETRY, 2024, 71 (01) : 308 - 325
  • [3] Erdos-Szekeres Theorem for Lines
    Barany, Imre
    Roldan-Pensado, Edgardo
    Toth, Geza
    DISCRETE & COMPUTATIONAL GEOMETRY, 2015, 54 (03) : 669 - 685
  • [4] Note on the Erdos-Szekeres theorem
    Toth, G
    Valtr, P
    DISCRETE & COMPUTATIONAL GEOMETRY, 1998, 19 (03) : 457 - 459
  • [5] A remark on the Erdos-Szekeres theorem
    Dumitrescu, A
    AMERICAN MATHEMATICAL MONTHLY, 2005, 112 (10): : 921 - 924
  • [6] A strengthening of the Erdos-Szekeres Theorem
    Balogh, Jozsef
    Clemen, Felix Christian
    Heath, Emily
    Lavrov, Mikhail
    EUROPEAN JOURNAL OF COMBINATORICS, 2022, 101
  • [7] A Positive Fraction Erdos - Szekeres Theorem
    I. Bárány
    Discrete & Computational Geometry, 1998, 19 : 335 - 342
  • [8] The partitioned version of the Erdos-Szekeres theorem
    Pór, A
    Valtr, P
    DISCRETE & COMPUTATIONAL GEOMETRY, 2002, 28 (04) : 625 - 637
  • [9] A modular version of the Erdos-Szekeres theorem
    Károlyi, G
    Pach, J
    Tóth, G
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2001, 38 : 245 - 259
  • [10] SOME NOTES ON THE ERDOS-SZEKERES THEOREM
    BIALOSTOCKI, A
    DIERKER, P
    VOXMAN, B
    DISCRETE MATHEMATICS, 1991, 91 (03) : 231 - 238