A positive fraction Erdos-Szekeres theorem

被引:44
|
作者
Barany, I
Valtr, P
机构
[1] Hungarian Acad Sci, Inst Math, H-1364 Budapest, Hungary
[2] Charles Univ, Dept Appl Math, CR-11800 Prague 1, Czech Republic
关键词
D O I
10.1007/PL00009350
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove a fractional version of the Erdos-Szekeres theorem: for any k there is a constant c(k) > 0 such that any sufficiently large finite set X subset of R-2 contains k subsets Y-1, ..., Y-k, each of size greater than or equal to c(k)\X\, such that every set {y(1), ..., y(k)} with y(i) is an element of Y-i is in convex position. The main tool is a lemma stating that any finite set X subset of R-d contains "large" subsets Y-1, ..., Y-k such that all sets {y(1), ..., y(k)} with y(i) is an element of Y-i have the same geometric (order) type, We also prove several related results (e.g., the positive fraction Radon theorem, the positive fraction Tverberg theorem).
引用
收藏
页码:335 / 342
页数:8
相关论文
共 50 条
  • [21] Around Erdos-Szekeres problems
    Koshelev, V. A.
    DOKLADY MATHEMATICS, 2009, 79 (03) : 360 - 361
  • [22] Problems and results around the Erdos-Szekeres convex polygon theorem
    Bárány, I
    Károlyi, G
    DISCRETE AND COMPUTATIONAL GEOMETRY, 2001, 2098 : 91 - 105
  • [23] Chromatic variants of the Erdos-Szekeres theorem on points in convex position
    Devillers, O
    Hurtado, F
    Károlyi, G
    Seara, C
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2003, 26 (03): : 193 - 208
  • [24] Ramsey-remainder for convex sets and the Erdos-Szekeres theorem
    Károlyi, G
    DISCRETE APPLIED MATHEMATICS, 2001, 109 (1-2) : 163 - 175
  • [25] A GENERALIZATION OF THE ERDOS-SZEKERES CONVEX N-GON THEOREM
    BISZTRICZKY, T
    TOTH, GF
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1989, 395 : 167 - 170
  • [26] Erdos-Szekeres Without Induction
    Norin, Sergey
    Yuditsky, Yelena
    DISCRETE & COMPUTATIONAL GEOMETRY, 2016, 55 (04) : 963 - 971
  • [27] ON LOWER BOUNDS FOR ERDOS-SZEKERES PRODUCTS
    Billsborough, C.
    Freedman, M.
    Hart, S.
    Kowalsky, G.
    Lubinsky, D.
    Pomeranz, A.
    Sammel, A.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (10) : 4233 - 4246
  • [28] A SAT attack on the Erdos-Szekeres conjecture
    Balko, Martin
    Valtr, Pavel
    EUROPEAN JOURNAL OF COMBINATORICS, 2017, 66 : 13 - 23
  • [29] Ramsey Theory, integer partitions and a new proof of the Erdos-Szekeres Theorem
    Moshkovitz, Guy
    Shapira, Asaf
    ADVANCES IN MATHEMATICS, 2014, 262 : 1107 - 1129
  • [30] Root systems and the Erdos-Szekeres problem
    Maltby, R
    ACTA ARITHMETICA, 1997, 81 (03) : 229 - 245