A positive fraction Erdos-Szekeres theorem

被引:44
|
作者
Barany, I
Valtr, P
机构
[1] Hungarian Acad Sci, Inst Math, H-1364 Budapest, Hungary
[2] Charles Univ, Dept Appl Math, CR-11800 Prague 1, Czech Republic
关键词
D O I
10.1007/PL00009350
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove a fractional version of the Erdos-Szekeres theorem: for any k there is a constant c(k) > 0 such that any sufficiently large finite set X subset of R-2 contains k subsets Y-1, ..., Y-k, each of size greater than or equal to c(k)\X\, such that every set {y(1), ..., y(k)} with y(i) is an element of Y-i is in convex position. The main tool is a lemma stating that any finite set X subset of R-d contains "large" subsets Y-1, ..., Y-k such that all sets {y(1), ..., y(k)} with y(i) is an element of Y-i have the same geometric (order) type, We also prove several related results (e.g., the positive fraction Radon theorem, the positive fraction Tverberg theorem).
引用
收藏
页码:335 / 342
页数:8
相关论文
共 50 条
  • [31] Mechanical Proving for ERDOS-SZEKERES Problem
    Shan, Meijing
    Proceedings of the 2016 6th International Conference on Applied Science, Engineering and Technology (ICASET), 2016, 77 : 49 - 53
  • [32] ON THE ERDOS-SZEKERES CONVEX POLYGON PROBLEM
    Suk, Andrew
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 30 (04) : 1047 - 1053
  • [33] On increasing subsequences of minimal Erdos-Szekeres permutations
    Su, Zhong Gen
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (08) : 1573 - 1580
  • [34] THE ERDOS-SZEKERES PROBLEM AND AN INDUCED RAMSEY QUESTION
    Mubayi, Dhruv
    Suk, Andrew
    MATHEMATIKA, 2019, 65 (03) : 702 - 707
  • [35] Variants of the Erdos-Szekeres and Erdos-Hajnal Ramsey problems
    Mubayi, Dhruv
    EUROPEAN JOURNAL OF COMBINATORICS, 2017, 62 : 197 - 205
  • [36] Erdos-Szekeres Theorems for Families of Convex Sets
    Holmsen, Andreas F.
    NEW TRENDS IN INTUITIVE GEOMETRY, 2018, 27 : 201 - 218
  • [37] Higher-order Erdos-Szekeres theorems
    Elias, Marek
    Matousek, Jiri
    ADVANCES IN MATHEMATICS, 2013, 244 : 1 - 15
  • [38] An Erdos-Szekeres type problem for interior points
    Wei, Xianglin
    Ding, Ren
    SURVEYS ON DISCRETE AND COMPUTATIONAL GEOMETRY: TWENTY YEARS LATER, 2008, 453 : 515 - 528
  • [39] ON A THEOREM OF ERDOS AND SZEKERES
    SUBBARAO, MV
    CANADIAN MATHEMATICAL BULLETIN, 1968, 11 (04): : 597 - &
  • [40] A multidimensional generalization of the Erdos-Szekeres lemma on monotone subsequences
    Szabó, T
    Tardos, G
    COMBINATORICS PROBABILITY & COMPUTING, 2001, 10 (06): : 557 - 565