A positive fraction Erdos-Szekeres theorem

被引:44
|
作者
Barany, I
Valtr, P
机构
[1] Hungarian Acad Sci, Inst Math, H-1364 Budapest, Hungary
[2] Charles Univ, Dept Appl Math, CR-11800 Prague 1, Czech Republic
关键词
D O I
10.1007/PL00009350
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove a fractional version of the Erdos-Szekeres theorem: for any k there is a constant c(k) > 0 such that any sufficiently large finite set X subset of R-2 contains k subsets Y-1, ..., Y-k, each of size greater than or equal to c(k)\X\, such that every set {y(1), ..., y(k)} with y(i) is an element of Y-i is in convex position. The main tool is a lemma stating that any finite set X subset of R-d contains "large" subsets Y-1, ..., Y-k such that all sets {y(1), ..., y(k)} with y(i) is an element of Y-i have the same geometric (order) type, We also prove several related results (e.g., the positive fraction Radon theorem, the positive fraction Tverberg theorem).
引用
收藏
页码:335 / 342
页数:8
相关论文
共 50 条
  • [41] On the Erdos-Szekeres n-interior-point problem
    Bharadwaj, B. V. Subramanya
    Govindarajan, Sathish
    Sharma, Karmveer
    EUROPEAN JOURNAL OF COMBINATORICS, 2014, 35 : 86 - 94
  • [42] The Erdos-Szekeres problem on points in convex position - A survey
    Morris, W
    Soltan, V
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 37 (04) : 437 - 458
  • [43] Two Upper Bounds for the Erdos-Szekeres Number with Conditions
    Strunk, Florian
    DISCRETE & COMPUTATIONAL GEOMETRY, 2013, 49 (02) : 183 - 188
  • [44] Erdos-Szekeres "happy end"-type theorems for separoids
    Strausz, Ricardo
    EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (04) : 1076 - 1085
  • [45] On the generalized Erdos-Szekeres conjecture a new upper bound
    Caro, Y
    DISCRETE MATHEMATICS, 1996, 160 (1-3) : 229 - 233
  • [46] AVERAGE GROWTH OF Lp NORMS OF ERDOS-SZEKERES POLYNOMIALS
    Billsborough, C.
    Gold, S.
    Linder, E.
    Lubinsky, D. S.
    Yu, J.
    ACTA MATHEMATICA HUNGARICA, 2022, 166 (01) : 179 - 204
  • [47] Two player game variant of the Erdos-Szekeres problem
    Kolipaka, Parikshit
    Govindarajan, Sathish
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2013, 15 (03): : 73 - 100
  • [48] Note on the Erdos - Szekeres Theorem
    G. Tóth
    P. Valtr
    Discrete & Computational Geometry, 1998, 19 : 457 - 459
  • [49] Computer solution to the 17-point Erdos-Szekeres problem
    Szekeres, George
    Peters, Lindsay
    ANZIAM JOURNAL, 2006, 48 : 151 - 164
  • [50] THE ERDOS-SZEKERES PROBLEM FOR NON-CROSSING CONVEX SETS
    Dobbins, Michael Gene
    Holmsen, Andreas
    Hubard, Alfredo
    MATHEMATIKA, 2014, 60 (02) : 463 - 484