A multidimensional generalization of the Erdos-Szekeres lemma on monotone subsequences

被引:9
|
作者
Szabó, T
Tardos, G
机构
[1] Univ Illinois, Urbana, IL 61801 USA
[2] Alfred Renyi Math Inst, H-1053 Budapest, Hungary
来源
COMBINATORICS PROBABILITY & COMPUTING | 2001年 / 10卷 / 06期
关键词
D O I
10.1017/S0963548301004862
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider an extension of the Monotone Subsequence lemma of Erdos and Szekeres in higher dimensions. Let v(1),..., v(n) is an element of IRd be a sequence of real vectors. For a subset I subset of or equal to [n] and vector (c) over right arrow is an element of {0,1}(d) we say that I is (c) over right arrow -free if there are no i < j is an element of I, such that, for every k = 1,...,d, v(k)(i) < v(k)(j) if and only if (c) over right arrow (k) = 0. We construct sequences of vectors with the k k property that the largest (c) over right arrow -free subset is small for every choice of (c) over right arrow. In particular, for d = 2 the largest (c) over right arrow free subset is O(n(5/8)) for all the four possible (c) over right arrow. The smallest possible value remains far from being determined. We also consider and resolve a simpler variant of the problem.
引用
收藏
页码:557 / 565
页数:9
相关论文
共 50 条
  • [1] On increasing subsequences of minimal Erdos-Szekeres permutations
    Su, Zhong Gen
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (08) : 1573 - 1580
  • [2] On the Erdos-Szekeres problem
    Koshelev, V. A.
    DOKLADY MATHEMATICS, 2007, 76 (01) : 603 - 605
  • [3] A generalization of the Erdos-Szekeres theorem to disjoint convex sets
    Pach, J
    Toth, G
    DISCRETE & COMPUTATIONAL GEOMETRY, 1998, 19 (03) : 437 - 445
  • [4] Erdos-Szekeres Tableaux
    Ault, Shaun V.
    Shemmer, Benjamin
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2014, 31 (03): : 391 - 402
  • [5] Around Erdos-Szekeres problems
    Koshelev, V. A.
    DOKLADY MATHEMATICS, 2009, 79 (03) : 360 - 361
  • [6] A GENERALIZATION OF THE ERDOS-SZEKERES CONVEX N-GON THEOREM
    BISZTRICZKY, T
    TOTH, GF
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1989, 395 : 167 - 170
  • [7] Note on the Erdos-Szekeres theorem
    Toth, G
    Valtr, P
    DISCRETE & COMPUTATIONAL GEOMETRY, 1998, 19 (03) : 457 - 459
  • [8] Erdos-Szekeres Theorem for Lines
    Barany, Imre
    Roldan-Pensado, Edgardo
    Toth, Geza
    DISCRETE & COMPUTATIONAL GEOMETRY, 2015, 54 (03) : 669 - 685
  • [9] A remark on the Erdos-Szekeres theorem
    Dumitrescu, A
    AMERICAN MATHEMATICAL MONTHLY, 2005, 112 (10): : 921 - 924
  • [10] Erdos-Szekeres Without Induction
    Norin, Sergey
    Yuditsky, Yelena
    DISCRETE & COMPUTATIONAL GEOMETRY, 2016, 55 (04) : 963 - 971