A multidimensional generalization of the Erdos-Szekeres lemma on monotone subsequences

被引:9
|
作者
Szabó, T
Tardos, G
机构
[1] Univ Illinois, Urbana, IL 61801 USA
[2] Alfred Renyi Math Inst, H-1053 Budapest, Hungary
来源
COMBINATORICS PROBABILITY & COMPUTING | 2001年 / 10卷 / 06期
关键词
D O I
10.1017/S0963548301004862
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider an extension of the Monotone Subsequence lemma of Erdos and Szekeres in higher dimensions. Let v(1),..., v(n) is an element of IRd be a sequence of real vectors. For a subset I subset of or equal to [n] and vector (c) over right arrow is an element of {0,1}(d) we say that I is (c) over right arrow -free if there are no i < j is an element of I, such that, for every k = 1,...,d, v(k)(i) < v(k)(j) if and only if (c) over right arrow (k) = 0. We construct sequences of vectors with the k k property that the largest (c) over right arrow -free subset is small for every choice of (c) over right arrow. In particular, for d = 2 the largest (c) over right arrow free subset is O(n(5/8)) for all the four possible (c) over right arrow. The smallest possible value remains far from being determined. We also consider and resolve a simpler variant of the problem.
引用
收藏
页码:557 / 565
页数:9
相关论文
共 50 条
  • [31] Another abstraction of the Erdos-Szekeres Happy End Theorem
    Alon, Noga
    Chiniforooshan, Ehsan
    Chvatal, Vasek
    Genest, Francois
    ELECTRONIC JOURNAL OF COMBINATORICS, 2010, 17 (01):
  • [32] On the Erdos-Szekeres n-interior-point problem
    Bharadwaj, B. V. Subramanya
    Govindarajan, Sathish
    Sharma, Karmveer
    EUROPEAN JOURNAL OF COMBINATORICS, 2014, 35 : 86 - 94
  • [33] The Erdos-Szekeres problem on points in convex position - A survey
    Morris, W
    Soltan, V
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 37 (04) : 437 - 458
  • [34] Two Upper Bounds for the Erdos-Szekeres Number with Conditions
    Strunk, Florian
    DISCRETE & COMPUTATIONAL GEOMETRY, 2013, 49 (02) : 183 - 188
  • [35] On the positive fraction Erdos-Szekeres theorem for convex sets
    Por, Attila
    Valtr, Pavel
    EUROPEAN JOURNAL OF COMBINATORICS, 2006, 27 (07) : 1199 - 1205
  • [36] Erdos-Szekeres Theorem for Point Sets with Forbidden Subconfigurations
    Karolyi, Gyula
    Toth, Geza
    DISCRETE & COMPUTATIONAL GEOMETRY, 2012, 48 (02) : 441 - 452
  • [37] On the generalized Erdos-Szekeres conjecture a new upper bound
    Caro, Y
    DISCRETE MATHEMATICS, 1996, 160 (1-3) : 229 - 233
  • [38] AVERAGE GROWTH OF Lp NORMS OF ERDOS-SZEKERES POLYNOMIALS
    Billsborough, C.
    Gold, S.
    Linder, E.
    Lubinsky, D. S.
    Yu, J.
    ACTA MATHEMATICA HUNGARICA, 2022, 166 (01) : 179 - 204
  • [39] Erdos-Szekeres "happy end"-type theorems for separoids
    Strausz, Ricardo
    EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (04) : 1076 - 1085
  • [40] Two player game variant of the Erdos-Szekeres problem
    Kolipaka, Parikshit
    Govindarajan, Sathish
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2013, 15 (03): : 73 - 100