A multidimensional generalization of the Erdos-Szekeres lemma on monotone subsequences

被引:9
|
作者
Szabó, T
Tardos, G
机构
[1] Univ Illinois, Urbana, IL 61801 USA
[2] Alfred Renyi Math Inst, H-1053 Budapest, Hungary
来源
COMBINATORICS PROBABILITY & COMPUTING | 2001年 / 10卷 / 06期
关键词
D O I
10.1017/S0963548301004862
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider an extension of the Monotone Subsequence lemma of Erdos and Szekeres in higher dimensions. Let v(1),..., v(n) is an element of IRd be a sequence of real vectors. For a subset I subset of or equal to [n] and vector (c) over right arrow is an element of {0,1}(d) we say that I is (c) over right arrow -free if there are no i < j is an element of I, such that, for every k = 1,...,d, v(k)(i) < v(k)(j) if and only if (c) over right arrow (k) = 0. We construct sequences of vectors with the k k property that the largest (c) over right arrow -free subset is small for every choice of (c) over right arrow. In particular, for d = 2 the largest (c) over right arrow free subset is O(n(5/8)) for all the four possible (c) over right arrow. The smallest possible value remains far from being determined. We also consider and resolve a simpler variant of the problem.
引用
收藏
页码:557 / 565
页数:9
相关论文
共 50 条
  • [21] THE ERDOS-SZEKERES PROBLEM AND AN INDUCED RAMSEY QUESTION
    Mubayi, Dhruv
    Suk, Andrew
    MATHEMATIKA, 2019, 65 (03) : 702 - 707
  • [22] Variants of the Erdos-Szekeres and Erdos-Hajnal Ramsey problems
    Mubayi, Dhruv
    EUROPEAN JOURNAL OF COMBINATORICS, 2017, 62 : 197 - 205
  • [23] Erdos-Szekeres Theorems for Families of Convex Sets
    Holmsen, Andreas F.
    NEW TRENDS IN INTUITIVE GEOMETRY, 2018, 27 : 201 - 218
  • [24] Higher-order Erdos-Szekeres theorems
    Elias, Marek
    Matousek, Jiri
    ADVANCES IN MATHEMATICS, 2013, 244 : 1 - 15
  • [25] An Erdos-Szekeres type problem for interior points
    Wei, Xianglin
    Ding, Ren
    SURVEYS ON DISCRETE AND COMPUTATIONAL GEOMETRY: TWENTY YEARS LATER, 2008, 453 : 515 - 528
  • [26] Erdos-Szekeres Theorem for k-Flats
    Barany, Imre
    Kalai, Gil
    Por, Attila
    DISCRETE & COMPUTATIONAL GEOMETRY, 2023, 69 (04) : 1232 - 1240
  • [27] A partitioned version of the Erdos-Szekeres theorem for quadrilaterals
    Pór, A
    DISCRETE & COMPUTATIONAL GEOMETRY, 2003, 30 (02) : 321 - 336
  • [28] AN EXTENSION OF THE ERDOS-SZEKERES THEOREM ON LARGE ANGLES
    BARANY, I
    COMBINATORICA, 1987, 7 (02) : 161 - 169
  • [29] Erdos-Szekeres theorem with forbidden order types
    Károlyi, G
    Solymosi, J
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (03) : 455 - 465
  • [30] A note on the Erdos-Szekeres Theorem in two dimensions
    Lichev, Lyuben
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (02):