Note on the Erdos-Szekeres theorem

被引:35
|
作者
Toth, G
Valtr, P
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[2] Rutgers State Univ, DIMACS Ctr, Piscataway, NJ 08855 USA
[3] Charles Univ, Dept Appl Math, CR-11800 Prague, Czech Republic
关键词
General Position; Convex Position; Szekeres Theorem;
D O I
10.1007/PL00009363
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let g(n) denote the least integer such that among any g(n) points in general position in the plane there are always n in convex position. In 1935, P. Erdos and G. Szekeres showed that g(n) exists and [GRAPHICS] Recently, the upper bounds has been slightly improved by Chung and Graham and by Kleitman and Pachter. In this paper we further improve the upper bound to [GRAPHICS]
引用
收藏
页码:457 / 459
页数:3
相关论文
共 50 条
  • [1] A note on the Erdos-Szekeres Theorem in two dimensions
    Lichev, Lyuben
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (02):
  • [2] Erdos-Szekeres Theorem for Lines
    Barany, Imre
    Roldan-Pensado, Edgardo
    Toth, Geza
    DISCRETE & COMPUTATIONAL GEOMETRY, 2015, 54 (03) : 669 - 685
  • [3] A remark on the Erdos-Szekeres theorem
    Dumitrescu, A
    AMERICAN MATHEMATICAL MONTHLY, 2005, 112 (10): : 921 - 924
  • [4] A strengthening of the Erdos-Szekeres Theorem
    Balogh, Jozsef
    Clemen, Felix Christian
    Heath, Emily
    Lavrov, Mikhail
    EUROPEAN JOURNAL OF COMBINATORICS, 2022, 101
  • [5] The partitioned version of the Erdos-Szekeres theorem
    Pór, A
    Valtr, P
    DISCRETE & COMPUTATIONAL GEOMETRY, 2002, 28 (04) : 625 - 637
  • [6] A modular version of the Erdos-Szekeres theorem
    Károlyi, G
    Pach, J
    Tóth, G
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2001, 38 : 245 - 259
  • [7] SOME NOTES ON THE ERDOS-SZEKERES THEOREM
    BIALOSTOCKI, A
    DIERKER, P
    VOXMAN, B
    DISCRETE MATHEMATICS, 1991, 91 (03) : 231 - 238
  • [8] A positive fraction Erdos-Szekeres theorem
    Barany, I
    Valtr, P
    DISCRETE & COMPUTATIONAL GEOMETRY, 1998, 19 (03) : 335 - 342
  • [9] Erdos-Szekeres Theorem for k-Flats
    Barany, Imre
    Kalai, Gil
    Por, Attila
    DISCRETE & COMPUTATIONAL GEOMETRY, 2023, 69 (04) : 1232 - 1240
  • [10] A partitioned version of the Erdos-Szekeres theorem for quadrilaterals
    Pór, A
    DISCRETE & COMPUTATIONAL GEOMETRY, 2003, 30 (02) : 321 - 336