A Positive Fraction Erdos - Szekeres Theorem

被引:0
|
作者
I. Bárány
机构
[1] Mathematical Institute of the Hungarian Academy of Sciences,
[2] P.O.B. 127,undefined
[3] H-1364 Budapest,undefined
[4] Hungary barany@math-inst.hu,undefined
[5] Department of Applied Mathematics,undefined
[6] Charles University,undefined
[7] Malostranské nám. 25,undefined
[8] 118 00 Praha 1,undefined
[9] Czech Republic valtr@kam.ms.mff.cuni.cz,undefined
来源
关键词
Related Result; Main Tool; Fractional Version; Positive Fraction; Tverberg Theorem;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a fractional version of the Erdős—Szekeres theorem: for any k there is a constant ck > 0 such that any sufficiently large finite set X⊂R2 contains k subsets Y1, ... ,Yk , each of size ≥ ck|X| , such that every set {y1,...,yk} with yiε Yi is in convex position. The main tool is a lemma stating that any finite set X⊂Rd contains ``large'' subsets Y1,...,Yk such that all sets {y1,...,yk} with yiε Yi have the same geometric (order) type. We also prove several related results (e.g., the positive fraction Radon theorem, the positive fraction Tverberg theorem). <lsiheader> <onlinepub>26 June, 1998 <editor>Editors-in-Chief: &lsilt;a href=../edboard.html#chiefs&lsigt;Jacob E. Goodman, Richard Pollack&lsilt;/a&lsigt; <pdfname>19n3p335.pdf <pdfexist>yes <htmlexist>no <htmlfexist>no <texexist>yes <sectionname> </lsiheader>
引用
收藏
页码:335 / 342
页数:7
相关论文
共 50 条
  • [1] A positive fraction Erdos-Szekeres theorem
    Barany, I
    Valtr, P
    DISCRETE & COMPUTATIONAL GEOMETRY, 1998, 19 (03) : 335 - 342
  • [2] On the positive fraction Erdos-Szekeres theorem for convex sets
    Por, Attila
    Valtr, Pavel
    EUROPEAN JOURNAL OF COMBINATORICS, 2006, 27 (07) : 1199 - 1205
  • [3] A Positive Fraction Erdos-Szekeres Theorem and Its Applications
    Suk, Andrew
    Zeng, Ji
    DISCRETE & COMPUTATIONAL GEOMETRY, 2024, 71 (01) : 308 - 325
  • [4] ON A THEOREM OF ERDOS AND SZEKERES
    SUBBARAO, MV
    CANADIAN MATHEMATICAL BULLETIN, 1968, 11 (04): : 597 - &
  • [5] Note on the Erdos - Szekeres Theorem
    G. Tóth
    P. Valtr
    Discrete & Computational Geometry, 1998, 19 : 457 - 459
  • [6] Erdos-Szekeres Theorem for Lines
    Barany, Imre
    Roldan-Pensado, Edgardo
    Toth, Geza
    DISCRETE & COMPUTATIONAL GEOMETRY, 2015, 54 (03) : 669 - 685
  • [7] Note on the Erdos-Szekeres theorem
    Toth, G
    Valtr, P
    DISCRETE & COMPUTATIONAL GEOMETRY, 1998, 19 (03) : 457 - 459
  • [8] A remark on the Erdos-Szekeres theorem
    Dumitrescu, A
    AMERICAN MATHEMATICAL MONTHLY, 2005, 112 (10): : 921 - 924
  • [9] A strengthening of the Erdos-Szekeres Theorem
    Balogh, Jozsef
    Clemen, Felix Christian
    Heath, Emily
    Lavrov, Mikhail
    EUROPEAN JOURNAL OF COMBINATORICS, 2022, 101
  • [10] ALTERNATIVE PROOF OF A THEOREM OF ERDOS AND SZEKERES
    BLACKWELL, P
    AMERICAN MATHEMATICAL MONTHLY, 1971, 78 (03): : 273 - +