A Positive Fraction Erdos - Szekeres Theorem

被引:0
|
作者
I. Bárány
机构
[1] Mathematical Institute of the Hungarian Academy of Sciences,
[2] P.O.B. 127,undefined
[3] H-1364 Budapest,undefined
[4] Hungary barany@math-inst.hu,undefined
[5] Department of Applied Mathematics,undefined
[6] Charles University,undefined
[7] Malostranské nám. 25,undefined
[8] 118 00 Praha 1,undefined
[9] Czech Republic valtr@kam.ms.mff.cuni.cz,undefined
来源
关键词
Related Result; Main Tool; Fractional Version; Positive Fraction; Tverberg Theorem;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a fractional version of the Erdős—Szekeres theorem: for any k there is a constant ck > 0 such that any sufficiently large finite set X⊂R2 contains k subsets Y1, ... ,Yk , each of size ≥ ck|X| , such that every set {y1,...,yk} with yiε Yi is in convex position. The main tool is a lemma stating that any finite set X⊂Rd contains ``large'' subsets Y1,...,Yk such that all sets {y1,...,yk} with yiε Yi have the same geometric (order) type. We also prove several related results (e.g., the positive fraction Radon theorem, the positive fraction Tverberg theorem). <lsiheader> <onlinepub>26 June, 1998 <editor>Editors-in-Chief: &lsilt;a href=../edboard.html#chiefs&lsigt;Jacob E. Goodman, Richard Pollack&lsilt;/a&lsigt; <pdfname>19n3p335.pdf <pdfexist>yes <htmlexist>no <htmlfexist>no <texexist>yes <sectionname> </lsiheader>
引用
收藏
页码:335 / 342
页数:7
相关论文
共 50 条
  • [41] ON A CONJECTURE OF ERDOS,P. AND SZEKERES,D.
    SENDOV, B
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1992, 45 (12): : 17 - 20
  • [42] Higher-order Erdos-Szekeres theorems
    Elias, Marek
    Matousek, Jiri
    ADVANCES IN MATHEMATICS, 2013, 244 : 1 - 15
  • [43] Erdos-Szekeres Theorems for Families of Convex Sets
    Holmsen, Andreas F.
    NEW TRENDS IN INTUITIVE GEOMETRY, 2018, 27 : 201 - 218
  • [44] On increasing subsequences of minimal Erdos-Szekeres permutations
    Su, Zhong Gen
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (08) : 1573 - 1580
  • [45] THE ERDOS-SZEKERES PROBLEM AND AN INDUCED RAMSEY QUESTION
    Mubayi, Dhruv
    Suk, Andrew
    MATHEMATIKA, 2019, 65 (03) : 702 - 707
  • [46] An Erdos-Szekeres type problem for interior points
    Wei, Xianglin
    Ding, Ren
    SURVEYS ON DISCRETE AND COMPUTATIONAL GEOMETRY: TWENTY YEARS LATER, 2008, 453 : 515 - 528
  • [47] ERDOS THEOREM
    WARLIMONT, R
    ARCHIV DER MATHEMATIK, 1976, 27 (02) : 164 - 168
  • [48] NEW PROOF OF A THEOREM OF SZEKERES
    KHARAGHANI, H
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1985, 40 (01) : 169 - 170
  • [49] SZEKERES MULTIDIMENSIONAL CONTINUED FRACTION
    CUSICK, TW
    MATHEMATICS OF COMPUTATION, 1977, 31 (137) : 280 - 317
  • [50] On the Erdos-Szekeres n-interior-point problem
    Bharadwaj, B. V. Subramanya
    Govindarajan, Sathish
    Sharma, Karmveer
    EUROPEAN JOURNAL OF COMBINATORICS, 2014, 35 : 86 - 94