A Positive Fraction Erdos - Szekeres Theorem

被引:0
|
作者
I. Bárány
机构
[1] Mathematical Institute of the Hungarian Academy of Sciences,
[2] P.O.B. 127,undefined
[3] H-1364 Budapest,undefined
[4] Hungary barany@math-inst.hu,undefined
[5] Department of Applied Mathematics,undefined
[6] Charles University,undefined
[7] Malostranské nám. 25,undefined
[8] 118 00 Praha 1,undefined
[9] Czech Republic valtr@kam.ms.mff.cuni.cz,undefined
来源
关键词
Related Result; Main Tool; Fractional Version; Positive Fraction; Tverberg Theorem;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a fractional version of the Erdős—Szekeres theorem: for any k there is a constant ck > 0 such that any sufficiently large finite set X⊂R2 contains k subsets Y1, ... ,Yk , each of size ≥ ck|X| , such that every set {y1,...,yk} with yiε Yi is in convex position. The main tool is a lemma stating that any finite set X⊂Rd contains ``large'' subsets Y1,...,Yk such that all sets {y1,...,yk} with yiε Yi have the same geometric (order) type. We also prove several related results (e.g., the positive fraction Radon theorem, the positive fraction Tverberg theorem). <lsiheader> <onlinepub>26 June, 1998 <editor>Editors-in-Chief: &lsilt;a href=../edboard.html#chiefs&lsigt;Jacob E. Goodman, Richard Pollack&lsilt;/a&lsigt; <pdfname>19n3p335.pdf <pdfexist>yes <htmlexist>no <htmlfexist>no <texexist>yes <sectionname> </lsiheader>
引用
收藏
页码:335 / 342
页数:7
相关论文
共 50 条
  • [21] Another abstraction of the Erdos-Szekeres Happy End Theorem
    Alon, Noga
    Chiniforooshan, Ehsan
    Chvatal, Vasek
    Genest, Francois
    ELECTRONIC JOURNAL OF COMBINATORICS, 2010, 17 (01):
  • [22] A generalization of the Erdos-Szekeres theorem to disjoint convex sets
    Pach, J
    Toth, G
    DISCRETE & COMPUTATIONAL GEOMETRY, 1998, 19 (03) : 437 - 445
  • [23] Erdos-Szekeres Theorem for Point Sets with Forbidden Subconfigurations
    Karolyi, Gyula
    Toth, Geza
    DISCRETE & COMPUTATIONAL GEOMETRY, 2012, 48 (02) : 441 - 452
  • [24] On a paper of Erdos and Szekeres
    Bourgain, Jean
    Chang, Mei-Chu
    JOURNAL D ANALYSE MATHEMATIQUE, 2018, 136 (01): : 253 - 271
  • [25] Problems and results around the Erdos-Szekeres convex polygon theorem
    Bárány, I
    Károlyi, G
    DISCRETE AND COMPUTATIONAL GEOMETRY, 2001, 2098 : 91 - 105
  • [26] Chromatic variants of the Erdos-Szekeres theorem on points in convex position
    Devillers, O
    Hurtado, F
    Károlyi, G
    Seara, C
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2003, 26 (03): : 193 - 208
  • [27] A GENERALIZATION OF THE ERDOS-SZEKERES CONVEX N-GON THEOREM
    BISZTRICZKY, T
    TOTH, GF
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1989, 395 : 167 - 170
  • [28] Ramsey-remainder for convex sets and the Erdos-Szekeres theorem
    Károlyi, G
    DISCRETE APPLIED MATHEMATICS, 2001, 109 (1-2) : 163 - 175
  • [29] Erdos-Szekeres Tableaux
    Ault, Shaun V.
    Shemmer, Benjamin
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2014, 31 (03): : 391 - 402
  • [30] On the Erdos-Szekeres problem
    Koshelev, V. A.
    DOKLADY MATHEMATICS, 2007, 76 (01) : 603 - 605