A New Adaptive Mixed Finite Element Method Based on Residual Type A Posterior Error Estimates for the Stokes Eigenvalue Problem

被引:16
|
作者
Han, Jiayu [1 ]
Zhang, Zhimin [2 ]
Yang, Yidu [1 ]
机构
[1] Guizhou Normal Univ, Sch Math & Comp Sci, Guiyang 550001, Peoples R China
[2] Beijing Computat Sci Res Ctr, Lab Appl Math, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Stokes eigenvalue problem; mixed finite element; Rayleigh quotient iteration; a posterior error estimates; adaptive algorithm; DISCRETIZATIONS;
D O I
10.1002/num.21891
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we combine mixed finite element method, multiscale discretization, and Rayleigh quotient iteration to propose a new adaptive algorithm based on residual type a posterior error estimates for the Stokes eigenvalue problem. Both reliability and efficiency of the error indicator are proved. The efficiency of the algorithm is also investigated using Chen's Innovation Finite Element Method (iFEM) package. Numerical results are satisfying.(c) 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 31-53, 2015
引用
收藏
页码:31 / 53
页数:23
相关论文
共 50 条
  • [41] Multi-parameter asymptotic error resolution of the mixed finite element method for the Stokes problem
    Zhou, AH
    RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1999, 33 (01): : 89 - 97
  • [42] POINTWISE ERROR ESTIMATES OF FINITE ELEMENT APPROXIMATIONS TO THE STOKES PROBLEM ON CONVEX POLYHEDRA
    Guzman, J.
    Leykekhman, D.
    MATHEMATICS OF COMPUTATION, 2012, 81 (280) : 1879 - 1902
  • [44] A posteriori error estimator for eigenvalue problems by mixed finite element method
    Jia ShangHui
    Chen HongTao
    Xie HeHu
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (05) : 887 - 900
  • [45] A posteriori error estimates for the mortar mixed finite element method
    Wheeler, MF
    Yotov, I
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (03) : 1021 - 1042
  • [46] A posteriori error estimator for eigenvalue problems by mixed finite element method
    ShangHui Jia
    HongTao Chen
    HeHu Xie
    Science China Mathematics, 2013, 56 : 887 - 900
  • [47] A posteriori error estimator for eigenvalue problems by mixed finite element method
    JIA ShangHui
    CHEN HongTao
    XIE HeHu
    Science China Mathematics, 2013, 56 (05) : 888 - 901
  • [48] Error estimates of finite volume method for Stokes optimal control problem
    Lan, Lin
    Chen, Ri-hui
    Wang, Xiao-dong
    Ma, Chen-xia
    Fu, Hao-nan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [49] Error estimates of finite volume method for Stokes optimal control problem
    Lin Lan
    Ri-hui Chen
    Xiao-dong Wang
    Chen-xia Ma
    Hao-nan Fu
    Journal of Inequalities and Applications, 2021
  • [50] The multilevel mixed finite element discretizations based on local defect-correction for the Stokes eigenvalue problem
    Yang, Yidu
    Han, Jiayu
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 289 : 249 - 266