Error estimates of finite volume method for Stokes optimal control problem

被引:2
|
作者
Lan, Lin [1 ]
Chen, Ri-hui [1 ]
Wang, Xiao-dong [1 ]
Ma, Chen-xia [1 ]
Fu, Hao-nan [1 ]
机构
[1] Kunming Univ Sci & Technol, Fac Land Resources Engn, Kunming 650093, Yunnan, Peoples R China
关键词
Optimal control problem; Stokes equations; Finite volume method; A priori error estimates; Variational discretization; 49J20; 65N30; UNIFIED ANALYSIS; ELEMENT METHODS; APPROXIMATION; OPTIMIZATION;
D O I
10.1186/s13660-020-02532-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss a priori error estimates for the finite volume element approximation of optimal control problem governed by Stokes equations. Under some reasonable assumptions, we obtain optimal L2-norm error estimates. The approximate orders for the state, costate, and control variables are O(h2) in the sense of L2-norm. Furthermore, we derive H1-norm error estimates for the state and costate variables. Finally, we give some conclusions and future works.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Error estimates of finite volume method for Stokes optimal control problem
    Lin Lan
    Ri-hui Chen
    Xiao-dong Wang
    Chen-xia Ma
    Hao-nan Fu
    [J]. Journal of Inequalities and Applications, 2021
  • [2] A priori error estimates of finite volume method for nonlinear optimal control problem
    Lu Z.
    Li L.
    Cao L.
    Hou C.
    [J]. Numerical Analysis and Applications, 2017, 10 (3) : 224 - 236
  • [3] A priori error estimates of finite volume element method for bilinear parabolic optimal control problem
    Lu, Zuliang
    Xu, Ruixiang
    Hou, Chunjuan
    Xing, Lu
    [J]. AIMS MATHEMATICS, 2023, 8 (08): : 19374 - 19390
  • [4] A-posteriori error estimates for a finite volume method for the Stokes problem in two dimensions
    Chatzipantelidis, P
    Makridakis, C
    Plexousakis, M
    [J]. APPLIED NUMERICAL MATHEMATICS, 2003, 46 (01) : 45 - 58
  • [6] A posteriori error estimates of stabilized finite volume method for the Stokes equations
    Zhang, Tong
    Mu, Lin
    Yuan, JinYun
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (01) : 32 - 43
  • [7] A priori error estimates of finite volume element method for hyperbolic optimal control problems
    Luo XianBing
    Chen YanPing
    Huang YunQing
    [J]. SCIENCE CHINA-MATHEMATICS, 2013, 56 (05) : 901 - 914
  • [8] A priori error estimates of finite volume element method for hyperbolic optimal control problems
    LUO XianBing
    CHEN YanPing
    HUANG YunQing
    [J]. Science China Mathematics, 2013, 56 (05) : 902 - 915
  • [9] Some error estimates of finite volume element method for parabolic optimal control problems
    Luo, Xianbing
    Chen, Yanping
    Huang, Yunqing
    Hou, Tianliang
    [J]. OPTIMAL CONTROL APPLICATIONS & METHODS, 2014, 35 (02): : 145 - 165
  • [10] ERROR ESTIMATES OF FINITE VOLUME ELEMENT METHOD FOR NONLINEAR HYPERBOLIC OPTIMAL CONTROL PROBLEMS
    Lu, Zuliang
    Li, Lin
    Feng, Yuming
    Cao, Longzhou
    Zhang, Wei
    [J]. ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, (41): : 70 - 84