Error estimates of finite volume method for Stokes optimal control problem

被引:0
|
作者
Lin Lan
Ri-hui Chen
Xiao-dong Wang
Chen-xia Ma
Hao-nan Fu
机构
[1] Kunming University of Science and Technology,Faculty of Land Resources Engineering
关键词
Optimal control problem; Stokes equations; Finite volume method; A priori error estimates; Variational discretization; 49J20; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we discuss a priori error estimates for the finite volume element approximation of optimal control problem governed by Stokes equations. Under some reasonable assumptions, we obtain optimal L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{2}$\end{document}-norm error estimates. The approximate orders for the state, costate, and control variables are O(h2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(h^{2})$\end{document} in the sense of L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{2}$\end{document}-norm. Furthermore, we derive H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H^{1}$\end{document}-norm error estimates for the state and costate variables. Finally, we give some conclusions and future works.
引用
收藏
相关论文
共 50 条
  • [1] Error estimates of finite volume method for Stokes optimal control problem
    Lan, Lin
    Chen, Ri-hui
    Wang, Xiao-dong
    Ma, Chen-xia
    Fu, Hao-nan
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [2] A priori error estimates of finite volume method for nonlinear optimal control problem
    Lu Z.
    Li L.
    Cao L.
    Hou C.
    [J]. Numerical Analysis and Applications, 2017, 10 (3) : 224 - 236
  • [3] A priori error estimates of finite volume element method for bilinear parabolic optimal control problem
    Lu, Zuliang
    Xu, Ruixiang
    Hou, Chunjuan
    Xing, Lu
    [J]. AIMS MATHEMATICS, 2023, 8 (08): : 19374 - 19390
  • [4] A-posteriori error estimates for a finite volume method for the Stokes problem in two dimensions
    Chatzipantelidis, P
    Makridakis, C
    Plexousakis, M
    [J]. APPLIED NUMERICAL MATHEMATICS, 2003, 46 (01) : 45 - 58
  • [6] A posteriori error estimates of stabilized finite volume method for the Stokes equations
    Zhang, Tong
    Mu, Lin
    Yuan, JinYun
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (01) : 32 - 43
  • [7] A priori error estimates of finite volume element method for hyperbolic optimal control problems
    Luo XianBing
    Chen YanPing
    Huang YunQing
    [J]. SCIENCE CHINA-MATHEMATICS, 2013, 56 (05) : 901 - 914
  • [8] A priori error estimates of finite volume element method for hyperbolic optimal control problems
    LUO XianBing
    CHEN YanPing
    HUANG YunQing
    [J]. Science China Mathematics, 2013, 56 (05) : 902 - 915
  • [9] Some error estimates of finite volume element method for parabolic optimal control problems
    Luo, Xianbing
    Chen, Yanping
    Huang, Yunqing
    Hou, Tianliang
    [J]. OPTIMAL CONTROL APPLICATIONS & METHODS, 2014, 35 (02): : 145 - 165
  • [10] ERROR ESTIMATES OF FINITE VOLUME ELEMENT METHOD FOR NONLINEAR HYPERBOLIC OPTIMAL CONTROL PROBLEMS
    Lu, Zuliang
    Li, Lin
    Feng, Yuming
    Cao, Longzhou
    Zhang, Wei
    [J]. ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, (41): : 70 - 84