共 50 条
Error estimates of finite volume method for Stokes optimal control problem
被引:0
|作者:
Lin Lan
Ri-hui Chen
Xiao-dong Wang
Chen-xia Ma
Hao-nan Fu
机构:
[1] Kunming University of Science and Technology,Faculty of Land Resources Engineering
来源:
关键词:
Optimal control problem;
Stokes equations;
Finite volume method;
A priori error estimates;
Variational discretization;
49J20;
65N30;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In this paper, we discuss a priori error estimates for the finite volume element approximation of optimal control problem governed by Stokes equations. Under some reasonable assumptions, we obtain optimal L2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$L^{2}$\end{document}-norm error estimates. The approximate orders for the state, costate, and control variables are O(h2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$O(h^{2})$\end{document} in the sense of L2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$L^{2}$\end{document}-norm. Furthermore, we derive H1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$H^{1}$\end{document}-norm error estimates for the state and costate variables. Finally, we give some conclusions and future works.
引用
收藏
相关论文