Error estimates of finite volume method for Stokes optimal control problem

被引:0
|
作者
Lin Lan
Ri-hui Chen
Xiao-dong Wang
Chen-xia Ma
Hao-nan Fu
机构
[1] Kunming University of Science and Technology,Faculty of Land Resources Engineering
关键词
Optimal control problem; Stokes equations; Finite volume method; A priori error estimates; Variational discretization; 49J20; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we discuss a priori error estimates for the finite volume element approximation of optimal control problem governed by Stokes equations. Under some reasonable assumptions, we obtain optimal L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{2}$\end{document}-norm error estimates. The approximate orders for the state, costate, and control variables are O(h2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(h^{2})$\end{document} in the sense of L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{2}$\end{document}-norm. Furthermore, we derive H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H^{1}$\end{document}-norm error estimates for the state and costate variables. Finally, we give some conclusions and future works.
引用
收藏
相关论文
共 50 条
  • [21] Finite element error estimates for an optimal control problem governed by the Burgers equation
    Merino, Pedro
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2016, 63 (03) : 793 - 824
  • [22] Convergence and error estimates of a penalization finite volume method for the compressible Navier-Stokes system
    Lukacova-Medvidova, Maria
    She, Bangwei
    Yuan, Yuhuan
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2024,
  • [24] A Priori Error Estimates of Crank-Nicolson Finite Volume Element Method for Parabolic Optimal Control Problems
    Luo, Xianbing
    Chen, Yanping
    Huang, Yunqing
    [J]. ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2013, 5 (05) : 688 - 704
  • [25] A PRIORI ERROR ESTIMATES OF FINITE VOLUME METHODS FOR GENERAL ELLIPTIC OPTIMAL CONTROL PROBLEMS
    Feng, Yuming
    Lu, Zuliang
    Cao, Longzhou
    Li, Lin
    Zhang, Shuhua
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [26] A posteriori error estimates of stabilized finite element method for the steady Navier-Stokes problem
    Zhang, Tong
    Zhao, Xin
    Lei, Gang
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (17) : 9081 - 9092
  • [27] SOME ERROR ESTIMATES OF FINITE VOLUME ELEMENT APPROXIMATION FOR ELLIPTIC OPTIMAL CONTROL PROBLEMS
    Luo, Xianbing
    Chen, Yanping
    Huang, Yunqing
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2013, 10 (03) : 697 - 711
  • [28] A POSTERIORI ERROR ESTIMATES FOR A DISTRIBUTED OPTIMAL CONTROL PROBLEM OF THE STATIONARY NAVIER-STOKES EQUATIONS
    Allendes, Alejandro
    Fuica, Francisco
    Otarola, Enrique
    Quero, Daniel
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (04) : 2898 - 2923
  • [29] L∞-error estimates for general optimal control problem by mixed finite element methods
    Xing, Xiaoqing
    Chen, Yanping
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2008, 5 (03) : 441 - 456
  • [30] A Posteriori Error Estimates for the Virtual Element Method for the Stokes Problem
    Wang, Gang
    Wang, Ying
    He, Yinnian
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2020, 84 (02)