SOME ERROR ESTIMATES OF FINITE VOLUME ELEMENT APPROXIMATION FOR ELLIPTIC OPTIMAL CONTROL PROBLEMS

被引:0
|
作者
Luo, Xianbing [1 ,2 ]
Chen, Yanping [3 ]
Huang, Yunqing [1 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Peoples R China
[2] Guizhou Univ, Coll Sci, Guiyang 550025, Peoples R China
[3] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
基金
美国国家科学基金会;
关键词
finite volume element method; variational discretization; optimal control problems; elliptic equation; distributed control; SUPERCONVERGENCE; EQUATIONS; OPTIMIZATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, finite volume element method is applied to solve the distributed optimal control problems governed by an elliptic equation. We use the method of variational discretization concept to approximate the problems. The optimal order error estimates in L-2 and L-infinity-norm are derived for the state, costate and control variables. The optimal H-1 and W-1,W-infinity-norm error estimates for the state and costate variables are also obtained. Numerical experiments are presented to test the theoretical results.
引用
收藏
页码:697 / 711
页数:15
相关论文
共 50 条