A New Adaptive Mixed Finite Element Method Based on Residual Type A Posterior Error Estimates for the Stokes Eigenvalue Problem

被引:16
|
作者
Han, Jiayu [1 ]
Zhang, Zhimin [2 ]
Yang, Yidu [1 ]
机构
[1] Guizhou Normal Univ, Sch Math & Comp Sci, Guiyang 550001, Peoples R China
[2] Beijing Computat Sci Res Ctr, Lab Appl Math, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Stokes eigenvalue problem; mixed finite element; Rayleigh quotient iteration; a posterior error estimates; adaptive algorithm; DISCRETIZATIONS;
D O I
10.1002/num.21891
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we combine mixed finite element method, multiscale discretization, and Rayleigh quotient iteration to propose a new adaptive algorithm based on residual type a posterior error estimates for the Stokes eigenvalue problem. Both reliability and efficiency of the error indicator are proved. The efficiency of the algorithm is also investigated using Chen's Innovation Finite Element Method (iFEM) package. Numerical results are satisfying.(c) 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 31-53, 2015
引用
收藏
页码:31 / 53
页数:23
相关论文
共 50 条
  • [21] An Adaptive Finite Element Method for the Transmission Eigenvalue Problem
    Han, Jiayu
    Yang, Yidu
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 69 (03) : 1279 - 1300
  • [22] A note on the residual type a posteriori error estimates for finite element eigenpairs of nonsymmetric elliptic eigenvalue problems
    Yang, Yidu
    Sun, Lingling
    Bi, Hai
    Li, Hao
    APPLIED NUMERICAL MATHEMATICS, 2014, 82 : 51 - 67
  • [23] Acceleration of two-grid stabilized mixed finite element method for the Stokes eigenvalue problem
    Xinlong Feng
    Zhifeng Weng
    Hehu Xie
    Applications of Mathematics, 2014, 59 : 615 - 630
  • [24] Acceleration of two-grid stabilized mixed finite element method for the Stokes eigenvalue problem
    Feng, Xinlong
    Weng, Zhifeng
    Xie, Hehu
    APPLICATIONS OF MATHEMATICS, 2014, 59 (06) : 615 - 630
  • [25] A Posteriori Error Estimates for the Virtual Element Method for the Stokes Problem
    Wang, Gang
    Wang, Ying
    He, Yinnian
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 84 (02)
  • [26] A Posteriori Error Estimates for the Virtual Element Method for the Stokes Problem
    Gang Wang
    Ying Wang
    Yinnian He
    Journal of Scientific Computing, 2020, 84
  • [27] A mixed finite element method for the generalized Stokes problem
    Bustinza, R
    Gatica, GN
    González, M
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2005, 49 (08) : 877 - 903
  • [28] A posteriori error estimates of stabilized finite element method for the steady Navier-Stokes problem
    Zhang, Tong
    Zhao, Xin
    Lei, Gang
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (17) : 9081 - 9092
  • [29] An optimal adaptive finite element method for the Stokes problem
    Kondratyuk, Yaroslav
    Stevenson, Rob
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (02) : 747 - 775
  • [30] ANALYSIS OF A MIXED FINITE-ELEMENT FOR THE STOKES PROBLEM .2. CONSTRUCTION AND ERROR-ESTIMATES
    FORTIN, M
    MGHAZLI, Z
    NUMERISCHE MATHEMATIK, 1992, 62 (02) : 161 - 188