A New Adaptive Mixed Finite Element Method Based on Residual Type A Posterior Error Estimates for the Stokes Eigenvalue Problem

被引:16
|
作者
Han, Jiayu [1 ]
Zhang, Zhimin [2 ]
Yang, Yidu [1 ]
机构
[1] Guizhou Normal Univ, Sch Math & Comp Sci, Guiyang 550001, Peoples R China
[2] Beijing Computat Sci Res Ctr, Lab Appl Math, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Stokes eigenvalue problem; mixed finite element; Rayleigh quotient iteration; a posterior error estimates; adaptive algorithm; DISCRETIZATIONS;
D O I
10.1002/num.21891
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we combine mixed finite element method, multiscale discretization, and Rayleigh quotient iteration to propose a new adaptive algorithm based on residual type a posterior error estimates for the Stokes eigenvalue problem. Both reliability and efficiency of the error indicator are proved. The efficiency of the algorithm is also investigated using Chen's Innovation Finite Element Method (iFEM) package. Numerical results are satisfying.(c) 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 31-53, 2015
引用
收藏
页码:31 / 53
页数:23
相关论文
共 50 条
  • [1] The a posteriori error estimates and adaptive computation of nonconforming mixed finite elements for the Stokes eigenvalue problem
    Sun, Lingling
    Yang, Yidu
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 421
  • [2] New error estimates of nonconforming mixed finite element methods for the Stokes problem
    Li, Mingxia
    Mao, Shipeng
    Zhang, Shangyou
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (07) : 937 - 951
  • [3] Error estimates for a mixed finite element method for the Maxwell's transmission eigenvalue problem
    Wang, Chao
    Cui, Jintao
    Sun, Jiguang
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2024, 58 (03) : 1185 - 1200
  • [4] Residual a Posteriori Error Estimates for the Mixed Finite Element Method
    Robert Kirby
    Computational Geosciences, 2003, 7 : 197 - 214
  • [5] Residual a posteriori error estimates for the mixed finite element method
    Kirby, R
    COMPUTATIONAL GEOSCIENCES, 2003, 7 (03) : 197 - 214
  • [6] The a posteriori error estimates of the Ciarlet-Raviart mixed finite element method for the biharmonic eigenvalue problem
    Feng, Jinhua
    Wang, Shixi
    Bi, Hai
    Yang, Yidu
    AIMS MATHEMATICS, 2024, 9 (02): : 3332 - 3348
  • [7] A new mixed finite element method for the Stokes problem
    Farhloul, M
    Zine, AM
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 276 (01) : 329 - 342
  • [8] A Type of Cascadic Adaptive Finite Element Method for Eigenvalue Problem
    Xu, Fei
    Huang, Qiumei
    Chen, Shuangshuang
    Ma, Hongkun
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2020, 12 (03) : 774 - 796
  • [9] A posteriori error estimates for the Stokes eigenvalue problem based on a recovery type estimator
    Huang, Pengzhan
    Zhang, Qiuyu
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2019, 62 (03): : 295 - 304
  • [10] A STABILIZED FINITE ELEMENT METHOD FOR THE STOKES EIGENVALUE PROBLEM
    Yuan, Maoqin
    Huang, Pengzhan
    MATHEMATICAL REPORTS, 2024, 26 (01): : 1 - 16