Booth encoding modulo (2n-2p-1) multipliers

被引:0
|
作者
Li, Lei [1 ]
Li, Saiye [1 ]
Yang, Peng [1 ]
Zhang, Qingyu [1 ]
机构
[1] Univ Elect Sci & Technol China, Res Inst Elect Sci & Technol, Chengdu 611731, Sichuan, Peoples R China
来源
IEICE ELECTRONICS EXPRESS | 2014年 / 11卷 / 15期
关键词
residue number systems (RNS); multiplier; 2(N)-1; MULTIPLIERS;
D O I
10.1587/elex.11.20140588
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this express, we propose Booth encoding high-speed modulo (2(n) - 2(p) - 1) multipliers on the condition length of (Cout) <= min(2(n) - p, n + p), where Cout is the carry-out output of the carry save adder tree that is used to compress the partial products and the correction term after splitting, shifting and resetting. Synthesized results demonstrate that the proposed Booth encoding modulo (2(n) - 2(p) - 1) multipliers have a good delay performance.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] An universal architecture for designing modulo (2n-2p-1) multipliers
    Li, Lei
    Hu, Jianhao
    Chen, Yiou
    IEICE ELECTRONICS EXPRESS, 2012, 9 (03): : 193 - 199
  • [2] Modified Booth encoding modulo (2n-1) multipliers
    Li, Lei
    Hu, Jianhao
    Chen, Yiou
    IEICE ELECTRONICS EXPRESS, 2012, 9 (05): : 352 - 358
  • [3] Modified Booth modulo 2n-1 multipliers
    Efstathiou, C
    Vergos, HT
    Nikolos, D
    IEEE TRANSACTIONS ON COMPUTERS, 2004, 53 (03) : 370 - 374
  • [4] Multifunction RNS modulo (2n±1) Multipliers Based on Modified Booth Encoding
    Juang, Tso-Bing
    Huang, Jian-Hao
    2012 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS (APCCAS), 2012, : 515 - 518
  • [5] Modified Booth 1's complement and modulo 2n-1 multipliers.
    Efstathiou, C
    Vergos, HT
    ICECS 2000: 7TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS & SYSTEMS, VOLS I AND II, 2000, : 637 - 640
  • [6] An optimized architecture for modulo (2n-2p+1) multipliers
    Li, Lei
    Yan, Hai
    Yang, Peng
    Hu, Jianhao
    IEICE ELECTRONICS EXPRESS, 2015, 12 (01):
  • [7] Fast hard multiple generators for radix-8 Booth encoded modulo 2n-1 and modulo 2n+1 multipliers
    Muralidharan, Ramya
    Chang, Chip-Hong
    2010 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, 2010, : 717 - 720
  • [8] NEW MULTIPLIERS MODULO 2(N)-1
    SKAVANTZOS, A
    RAO, PB
    IEEE TRANSACTIONS ON COMPUTERS, 1992, 41 (08) : 957 - 961
  • [9] An improved architecture for designing modulo (2n-2p+1) multipliers
    Li, Lei
    Zhou, Lu
    Zhou, Wanting
    IEICE ELECTRONICS EXPRESS, 2012, 9 (14): : 1141 - 1146
  • [10] Novel modulo 2n+1 multipliers
    Vergos, H. T.
    Efstathiou, C.
    DSD 2006: 9TH EUROMICRO CONFERENCE ON DIGITAL SYSTEM DESIGN: ARCHITECTURES, METHODS AND TOOLS, PROCEEDINGS, 2006, : 168 - +