Modified Booth encoding modulo (2n-1) multipliers

被引:6
|
作者
Li, Lei [1 ]
Hu, Jianhao [2 ]
Chen, Yiou [2 ]
机构
[1] Univ Elect Sci & Technol China, Res Inst Elect Sci & Technol, Chengdu 611731, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, Natl Key Lab Sci & Technol Commun, Chengdu 611731, Sichuan, Peoples R China
来源
IEICE ELECTRONICS EXPRESS | 2012年 / 9卷 / 05期
基金
中国国家自然科学基金;
关键词
Residue Number Systems (RNS); multiplier;
D O I
10.1587/elex.9.352
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
(2(n) - 1) is one of the most commonly used moduli in Residue Number Systems. In this express, we propose a novel Booth encoding architecture. Based on the proposed Booth encoding architecture, we can design high speed and high-efficient modulo (2(n) - 1) multipliers, which are the fastest among all known modulo (2(n) - 1) multipliers. The performance and the efficiency of the proposed multipliers are evaluated and compared with the earlier fastest modulo (2(n) - 1) multipliers, based on a simple gate-count and gate-delay model. These results reveal that the proposed multipliers lead to average approximately 14% faster than the fastest known modulo (2(n) - 1) multipliers.
引用
收藏
页码:352 / 358
页数:7
相关论文
共 50 条
  • [1] Modified Booth modulo 2n-1 multipliers
    Efstathiou, C
    Vergos, HT
    Nikolos, D
    IEEE TRANSACTIONS ON COMPUTERS, 2004, 53 (03) : 370 - 374
  • [2] Modified Booth 1's complement and modulo 2n-1 multipliers.
    Efstathiou, C
    Vergos, HT
    ICECS 2000: 7TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS & SYSTEMS, VOLS I AND II, 2000, : 637 - 640
  • [3] Multifunction RNS modulo (2n±1) Multipliers Based on Modified Booth Encoding
    Juang, Tso-Bing
    Huang, Jian-Hao
    2012 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS (APCCAS), 2012, : 515 - 518
  • [4] Booth encoding modulo (2n-2p-1) multipliers
    Li, Lei
    Li, Saiye
    Yang, Peng
    Zhang, Qingyu
    IEICE ELECTRONICS EXPRESS, 2014, 11 (15):
  • [5] Fast hard multiple generators for radix-8 Booth encoded modulo 2n-1 and modulo 2n+1 multipliers
    Muralidharan, Ramya
    Chang, Chip-Hong
    2010 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, 2010, : 717 - 720
  • [6] Area-Power Efficient Modulo 2n-1 and Modulo 2n+1 Multipliers for {2n-1, 2n, 2n+1} Based RNS
    Muralidharan, Ramya
    Chang, Chip-Hong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2012, 59 (10) : 2263 - 2274
  • [7] Perspective and Opportunities of Modulo 2n-1 Multipliers in Residue Number System: A Review
    Kumar, Raj
    Jaiswal, Ritesh Kumar
    Mishra, Ram Awadh
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2020, 29 (11)
  • [8] Radix-8 Booth Encoded Modulo 2n-1 Multipliers With Adaptive Delay for High Dynamic Range Residue Number System
    Muralidharan, Ramya
    Chang, Chip-Hong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2011, 58 (05) : 982 - 993
  • [9] Efficient modulo 2n+1 multiply and multiply-add units based on modified Booth encoding
    Efstathiou, Constantinos
    Moshopoulos, N.
    Axelos, N.
    Pekmestzi, K.
    INTEGRATION-THE VLSI JOURNAL, 2014, 47 (01) : 140 - 147
  • [10] EFFICIENT ARCHITECTURES FOR MODULO 2n-1 SQUARERS
    Spyrou, A.
    Bakalis, D.
    Vergos, H. T.
    2009 16TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING, VOLS 1 AND 2, 2009, : 687 - +