Modified Booth encoding modulo (2n-1) multipliers

被引:6
|
作者
Li, Lei [1 ]
Hu, Jianhao [2 ]
Chen, Yiou [2 ]
机构
[1] Univ Elect Sci & Technol China, Res Inst Elect Sci & Technol, Chengdu 611731, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, Natl Key Lab Sci & Technol Commun, Chengdu 611731, Sichuan, Peoples R China
来源
IEICE ELECTRONICS EXPRESS | 2012年 / 9卷 / 05期
基金
中国国家自然科学基金;
关键词
Residue Number Systems (RNS); multiplier;
D O I
10.1587/elex.9.352
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
(2(n) - 1) is one of the most commonly used moduli in Residue Number Systems. In this express, we propose a novel Booth encoding architecture. Based on the proposed Booth encoding architecture, we can design high speed and high-efficient modulo (2(n) - 1) multipliers, which are the fastest among all known modulo (2(n) - 1) multipliers. The performance and the efficiency of the proposed multipliers are evaluated and compared with the earlier fastest modulo (2(n) - 1) multipliers, based on a simple gate-count and gate-delay model. These results reveal that the proposed multipliers lead to average approximately 14% faster than the fastest known modulo (2(n) - 1) multipliers.
引用
收藏
页码:352 / 358
页数:7
相关论文
共 50 条
  • [41] A universal architecture for designing efficient modulo 2n,+1 multipliers
    Sousa, L
    Chaves, R
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2005, 52 (06) : 1166 - 1178
  • [42] Area Efficient Diminished 2n-1 Modulo Adder using Parallel Prefix Adder
    Patel, Beerendra K.
    Kanungo, Jitendra
    JOURNAL OF ENGINEERING RESEARCH, 2022, 10 : 8 - 18
  • [43] Efficient VLSI design of modulo 2n-1 adder using hybrid carry selection
    Lin, Su-Hon
    Sheu, Ming-Hwa
    Wang, Kuang-Hui
    Zhu, Jun-Jie
    Chen, Si-Ying
    2007 IEEE WORKSHOP ON SIGNAL PROCESSING SYSTEMS, VOLS 1 AND 2, 2007, : 142 - 145
  • [44] Efficient modulo 2N+1 tree multipliers for diminished-1 operands
    Efstathiou, C
    Vergos, HT
    Dimitrakopoulos, G
    Nikolos, D
    ICECS 2003: PROCEEDINGS OF THE 2003 10TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS, VOLS 1-3, 2003, : 200 - 203
  • [45] Improved modulo-( 2n ± 3) multipliers
    Ahmadifar, H.
    Jaberipur, G.
    2013 17TH CSI INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND DIGITAL SYSTEMS (CADS 2013), 2013, : 31 - 35
  • [46] SPREADS AND PACKINGS FOR A CLASS OF ((2N + 1) (2N-1 - 1) + 1, 2N-1, 1)-DESIGNS
    BAKER, RD
    EBERT, GL
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1985, 40 (01) : 45 - 54
  • [47] A Simple Radix-4 Booth Encoded Modulo 2n+1 Multiplier
    Muralidharan, Ramya
    Chang, Chip-Hong
    2011 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2011, : 1163 - 1166
  • [48] Residue adder design for the modulo set {2n-1; 2n; 2n+1-1} and its application in DCT architecture for HEVC
    Kopperundevi, P.
    Prakash, M. Surya
    2022 IEEE 3RD INTERNATIONAL CONFERENCE ON VLSI SYSTEMS, ARCHITECTURE, TECHNOLOGY AND APPLICATIONS, VLSI SATA, 2022,
  • [49] Improved-booth encoding for low-power multipliers
    Khoo, KY
    Yu, Z
    Willson, AN
    ISCAS '99: PROCEEDINGS OF THE 1999 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 1: VLSI, 1999, : 62 - 65
  • [50] Improved-booth encoding for low-power multipliers
    Khoo, Kei-Yong
    Yu, Zhan
    Willson Jr., Alan N.
    Proceedings - IEEE International Symposium on Circuits and Systems, 1999, 1