Modified Booth encoding modulo (2n-1) multipliers

被引:6
|
作者
Li, Lei [1 ]
Hu, Jianhao [2 ]
Chen, Yiou [2 ]
机构
[1] Univ Elect Sci & Technol China, Res Inst Elect Sci & Technol, Chengdu 611731, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, Natl Key Lab Sci & Technol Commun, Chengdu 611731, Sichuan, Peoples R China
来源
IEICE ELECTRONICS EXPRESS | 2012年 / 9卷 / 05期
基金
中国国家自然科学基金;
关键词
Residue Number Systems (RNS); multiplier;
D O I
10.1587/elex.9.352
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
(2(n) - 1) is one of the most commonly used moduli in Residue Number Systems. In this express, we propose a novel Booth encoding architecture. Based on the proposed Booth encoding architecture, we can design high speed and high-efficient modulo (2(n) - 1) multipliers, which are the fastest among all known modulo (2(n) - 1) multipliers. The performance and the efficiency of the proposed multipliers are evaluated and compared with the earlier fastest modulo (2(n) - 1) multipliers, based on a simple gate-count and gate-delay model. These results reveal that the proposed multipliers lead to average approximately 14% faster than the fastest known modulo (2(n) - 1) multipliers.
引用
收藏
页码:352 / 358
页数:7
相关论文
共 50 条
  • [31] A simplified modulo (2n-1) squaring scheme for residue number system
    Hariri, A
    Navi, K
    Rastegar, R
    Eurocon 2005: The International Conference on Computer as a Tool, Vol 1 and 2 , Proceedings, 2005, : 615 - 618
  • [32] An optimized architecture for modulo (2n-2p+1) multipliers
    Li, Lei
    Yan, Hai
    Yang, Peng
    Hu, Jianhao
    IEICE ELECTRONICS EXPRESS, 2015, 12 (01):
  • [33] Efficient diminished-1 modulo 2n+1 multipliers
    Efstathiou, C
    Vergos, HT
    Dimitrakopoulos, G
    Nikolos, D
    IEEE TRANSACTIONS ON COMPUTERS, 2005, 54 (04) : 491 - 496
  • [34] A Logarithmic Depth Quantum Carry-Lookahead Modulo (2n-1) Adder
    Gaur, Bhaskar
    Munoz-Coreas, Edgard
    Thapliyal, Himanshu
    PROCEEDINGS OF THE GREAT LAKES SYMPOSIUM ON VLSI 2023, GLSVLSI 2023, 2023, : 125 - 130
  • [35] RM(2N-1) AND PHIN(2N-1) FAMILIES
    MAKEEV, GN
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1990, (01): : 84 - 86
  • [36] Fast modulo 2n-1 and 2n+1 adder using carry-chain on FPGA
    Didier, Laurent-Stephane
    Jaulmes, Luc
    2013 ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2013, : 1155 - 1159
  • [37] FPGA Implementation of a Novel Multifunction Modulo (2n ± 1) Multiplier Using Radix-4 Booth Encoding Scheme
    Kuo, Chao-Tsung
    Wu, Yao-Cheng
    APPLIED SCIENCES-BASEL, 2023, 13 (18):
  • [38] Efficient modulo 2n+1 multipliers for diminished-1 representation
    Chen, J. W.
    Yao, R. H.
    IET CIRCUITS DEVICES & SYSTEMS, 2010, 4 (04) : 291 - 300
  • [39] An improved architecture for designing modulo (2n-2p+1) multipliers
    Li, Lei
    Zhou, Lu
    Zhou, Wanting
    IEICE ELECTRONICS EXPRESS, 2012, 9 (14): : 1141 - 1146
  • [40] An universal architecture for designing modulo (2n-2p-1) multipliers
    Li, Lei
    Hu, Jianhao
    Chen, Yiou
    IEICE ELECTRONICS EXPRESS, 2012, 9 (03): : 193 - 199