Booth encoding modulo (2n-2p-1) multipliers

被引:0
|
作者
Li, Lei [1 ]
Li, Saiye [1 ]
Yang, Peng [1 ]
Zhang, Qingyu [1 ]
机构
[1] Univ Elect Sci & Technol China, Res Inst Elect Sci & Technol, Chengdu 611731, Sichuan, Peoples R China
来源
IEICE ELECTRONICS EXPRESS | 2014年 / 11卷 / 15期
关键词
residue number systems (RNS); multiplier; 2(N)-1; MULTIPLIERS;
D O I
10.1587/elex.11.20140588
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this express, we propose Booth encoding high-speed modulo (2(n) - 2(p) - 1) multipliers on the condition length of (Cout) <= min(2(n) - p, n + p), where Cout is the carry-out output of the carry save adder tree that is used to compress the partial products and the correction term after splitting, shifting and resetting. Synthesized results demonstrate that the proposed Booth encoding modulo (2(n) - 2(p) - 1) multipliers have a good delay performance.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Radix-8 Booth Encoded Modulo 2n-1 Multipliers With Adaptive Delay for High Dynamic Range Residue Number System
    Muralidharan, Ramya
    Chang, Chip-Hong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2011, 58 (05) : 982 - 993
  • [22] Efficient modulo 2N+1 tree multipliers for diminished-1 operands
    Efstathiou, C
    Vergos, HT
    Dimitrakopoulos, G
    Nikolos, D
    ICECS 2003: PROCEEDINGS OF THE 2003 10TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS, VOLS 1-3, 2003, : 200 - 203
  • [23] A Simple Radix-4 Booth Encoded Modulo 2n+1 Multiplier
    Muralidharan, Ramya
    Chang, Chip-Hong
    2011 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2011, : 1163 - 1166
  • [24] Modulo (2p ± 1) multipliers using a three-operand modular addition and booth recoding based on signed-digit number arithmetic
    Wei, SG
    Shimizu, K
    PROCEEDINGS OF THE 2003 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL V: BIO-MEDICAL CIRCUITS & SYSTEMS, VLSI SYSTEMS & APPLICATIONS, NEURAL NETWORKS & SYSTEMS, 2003, : 221 - 224
  • [25] EFFICIENT METHOD FOR DESIGNING MODULO {2n ± k} MULTIPLIERS
    Pettenghi, Hector
    Cotofana, Sorin
    Sousa, Leonel
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2014, 23 (01)
  • [26] High-speed modulo (2n+3) multipliers
    Li, Lei
    Zhou, Lu
    Zhou, Wanting
    IEICE ELECTRONICS EXPRESS, 2013, 10 (15):
  • [27] Perspective and Opportunities of Modulo 2n-1 Multipliers in Residue Number System: A Review
    Kumar, Raj
    Jaiswal, Ritesh Kumar
    Mishra, Ram Awadh
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2020, 29 (11)
  • [28] Modulo-(2n-2q-1) Parallel Prefix Addition via Excess-Modulo Encoding of Residues
    Langroudi, Seyed Hamed Fatemi
    Jaberipur, Ghassem
    IEEE 22ND SYMPOSIUM ON COMPUTER ARITHMETIC ARITH 22, 2015, : 121 - 128
  • [29] A Modulo 2n+1 Multiplier with Double-LSB Encoding of residues
    Jaberipur, G.
    Alavi, H.
    15TH CSI INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND DIGITAL SYSTEMS (CADS 2010), 2010, : 147 - 150
  • [30] A high speed modulo (2n-2p+1) multiplier design
    Yan, Hai
    Li, Lei
    Zhang, Qyu
    IEICE ELECTRONICS EXPRESS, 2015, 12 (23):