Booth encoding modulo (2n-2p-1) multipliers

被引:0
|
作者
Li, Lei [1 ]
Li, Saiye [1 ]
Yang, Peng [1 ]
Zhang, Qingyu [1 ]
机构
[1] Univ Elect Sci & Technol China, Res Inst Elect Sci & Technol, Chengdu 611731, Sichuan, Peoples R China
来源
IEICE ELECTRONICS EXPRESS | 2014年 / 11卷 / 15期
关键词
residue number systems (RNS); multiplier; 2(N)-1; MULTIPLIERS;
D O I
10.1587/elex.11.20140588
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this express, we propose Booth encoding high-speed modulo (2(n) - 2(p) - 1) multipliers on the condition length of (Cout) <= min(2(n) - p, n + p), where Cout is the carry-out output of the carry save adder tree that is used to compress the partial products and the correction term after splitting, shifting and resetting. Synthesized results demonstrate that the proposed Booth encoding modulo (2(n) - 2(p) - 1) multipliers have a good delay performance.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Fast Booth Multipliers Using Approximate 4:2 Compressors
    Sreeparvathy, S.
    George, Rachana
    Kuruvithadam, Rose Mary
    Nalesh, S.
    2021 IEEE INTERNATIONAL SYMPOSIUM ON SMART ELECTRONIC SYSTEMS (ISES 2021), 2021, : 157 - 160
  • [32] A universal architecture for designing efficient modulo 2n+1 multipliers (vol 52, pg 1166, 2005)
    Sousa, L
    Chaves, R
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2005, 52 (09) : 1982 - 1982
  • [33] High-Speed and High-efficient Modulo (2n-3) Multipliers
    Liu Huihua
    Li Lei
    Zhou Wanting
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON EDUCATION, MANAGEMENT, COMPUTER AND SOCIETY, 2016, 37 : 1991 - 1995
  • [34] Efficient methods in converting to modulo 2n+1 and 2n-1
    Manochehri, Kooroush
    Pourmozafari, Saadat
    Sadeghian, Babak
    THIRD INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: NEW GENERATIONS, PROCEEDINGS, 2006, : 178 - +
  • [35] On the design of modulo 2n±1 adders
    Efstathiou, C
    Vergos, HT
    Nikolos, D
    ICECS 2001: 8TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS, VOLS I-III, CONFERENCE PROCEEDINGS, 2001, : 517 - 520
  • [36] NOVEL MODULO 2n+1 SUBTRACTORS
    Vassalos, E.
    Bakalis, D.
    Vergos, H. T.
    2009 16TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING, VOLS 1 AND 2, 2009, : 597 - +
  • [37] Efficient modulo 2n ± 1 squarers
    Bakalis, D.
    Vergos, H. T.
    Spyrou, A.
    INTEGRATION-THE VLSI JOURNAL, 2011, 44 (03) : 163 - 174
  • [38] On Modulo 2n+1 Adder Design
    Vergos, Haridimos T.
    Dimitrakopoulos, Giorgos
    IEEE TRANSACTIONS ON COMPUTERS, 2012, 61 (02) : 173 - 186
  • [39] Algorithm for modulo (2n+1) multiplication
    Sousa, LA
    ELECTRONICS LETTERS, 2003, 39 (09) : 752 - 754
  • [40] AN ELEMENTARY APPROACH TO ((p-1)/4(p-1)/2) modulo p2
    Pan, Hao
    TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (06): : 2197 - 2202