Lie-point symmetries of the discrete Liouville equation

被引:12
|
作者
Levi, D. [1 ,2 ]
Martina, L. [3 ,4 ]
Winternitz, P. [1 ,2 ,5 ,6 ]
机构
[1] Univ Roma Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy
[2] Sez INFN Roma Tre, I-00146 Rome, Italy
[3] Univ Salento, Dipartimento Matemat & Fis, I-73100 Lecce, Italy
[4] Sez INFN Lecce, I-73100 Lecce, Italy
[5] Univ Montreal, Dept Math & Stat, Montreal, PQ H3C 3J7, Canada
[6] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Lie algebras of Lie groups; integrable systems; partial differential equations; discretization procedures for PDEs;
D O I
10.1088/1751-8113/48/2/025204
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Liouville equation is well known to be linearizable by a point transformation. It has an infinite dimensional Lie point symmetry algebra isomorphic to a direct sum of two Virasoro algebras. We show that it is not possible to discretize the equation keeping the entire symmetry algebra as point symmetries. We do however construct a difference system approximating the Liouville equation that is invariant under the maximal finite subgroup SLx(2, R) circle times SLy(2, R). The invariant scheme is an explicit one and provides a much better approximation of exact solutions than a comparable standard (noninvariant) scheme and also than a scheme invariant under an infinite dimensional group of generalized symmetries.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Random Lie-point symmetries
    Pedro José Catuogno
    Luis Roberto Lucinger
    Journal of Nonlinear Mathematical Physics, 2014, 21 : 149 - 165
  • [2] Random Lie-point symmetries
    Catuogno, Pedro Jose
    Lucinger, Luis Roberto
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2014, 21 (02) : 149 - 165
  • [3] LIE-POINT SYMMETRIES IN BIFURCATION PROBLEMS
    CICOGNA, G
    GAETA, G
    ANNALES DE L INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE, 1992, 56 (04): : 375 - 414
  • [4] LIE-POINT SYMMETRIES PRESERVED BY DERIVATIVE
    Campoamor-Stursberg, Rutwig
    PROCEEDINGS OF THE TWENTY-FIRST INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2020, 21 : 75 - 88
  • [5] LIE-POINT SYMMETRIES OF DISCRETE VERSUS CONTINUOUS DYNAMICAL-SYSTEMS
    GAETA, G
    PHYSICS LETTERS A, 1993, 178 (5-6) : 376 - 384
  • [6] Partial Lie-point symmetries of differential equations
    Cicogna, G
    Gaeta, G
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (03): : 491 - 512
  • [7] Lie-point symmetries and stochastic differential equations
    Gaeta, G
    Quintero, NR
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (48): : 8485 - 8505
  • [8] Lie-point symmetries and nonlinear dynamical systems
    Cicogna, G
    Gaeta, G
    MATHEMATICAL AND COMPUTER MODELLING, 1997, 25 (8-9) : 101 - 113
  • [9] On Lie-point symmetries for Ito stochastic differential equations
    G. Gaeta
    C. Lunini
    Journal of Nonlinear Mathematical Physics, 2017, 24 : 90 - 102
  • [10] Lie-Point Symmetries and Backward Stochastic Differential Equations
    Zhang, Na
    Jia, Guangyan
    SYMMETRY-BASEL, 2019, 11 (09):