Lie-Point Symmetries and Backward Stochastic Differential Equations

被引:1
|
作者
Zhang, Na [1 ]
Jia, Guangyan [2 ]
机构
[1] Tianjin Univ Technol, Sch Sci, Tianjin 300384, Peoples R China
[2] Shandong Univ, Zhongtai Secur Inst Financial Studies, Jinan 250199, Shandong, Peoples R China
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 09期
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
backward stochastic differential equation; Lie-point symmetry; forward-backward stochastic differential equation; CONSERVED QUANTITIES; QUADRATIC BSDES;
D O I
10.3390/sym11091153
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we introduce the Lie-point symmetry method into backward stochastic differential equation and forward-backward stochastic differential equations, and get the corresponding deterministic equations.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Lie-point symmetries and stochastic differential equations
    Gaeta, G
    Quintero, NR
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (48): : 8485 - 8505
  • [2] On Lie-point symmetries for Ito stochastic differential equations
    G. Gaeta
    C. Lunini
    [J]. Journal of Nonlinear Mathematical Physics, 2017, 24 : 90 - 102
  • [3] Random Lie-point symmetries of stochastic differential equations
    Gaeta, Giuseppe
    Spadaro, Francesco
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (05)
  • [4] On Lie-point symmetries for Ito stochastic differential equations
    Gaeta, G.
    Lunini, C.
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2017, 24 : 90 - 102
  • [5] Lie-point symmetries and stochastic differential equations: II
    Gaeta, G
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (27): : 4883 - 4902
  • [6] Partial Lie-point symmetries of differential equations
    Cicogna, G
    Gaeta, G
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (03): : 491 - 512
  • [7] Random Lie-point symmetries of stochastic differential equations (vol 58, 053503, 2017)
    Gaeta, Giuseppe
    Spadaro, Francesco
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (12)
  • [8] Lie point symmetries of Stratonovich stochastic differential equations
    Kozlov, Roman
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (50)
  • [9] Random Lie-point symmetries
    Pedro José Catuogno
    Luis Roberto Lucinger
    [J]. Journal of Nonlinear Mathematical Physics, 2014, 21 : 149 - 165
  • [10] Random Lie-point symmetries
    Catuogno, Pedro Jose
    Lucinger, Luis Roberto
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2014, 21 (02) : 149 - 165