Random Lie-point symmetries of stochastic differential equations

被引:17
|
作者
Gaeta, Giuseppe [1 ,3 ]
Spadaro, Francesco [2 ,3 ,4 ]
机构
[1] Univ Milan, Dipartimento Matemat, Via Saldini 50, I-20133 Milan, Italy
[2] Univ Roma, Dipartimento Matemat, I-00185 Rome, Italy
[3] INdAM, GNFM, Lausanne, Switzerland
[4] Ecole Polytech Fed Lausanne, SB MATHAA CSFT, Batiment MA Stn 8, CH-1015 Lausanne, Switzerland
关键词
FOKKER-PLANCK EQUATION; CONSERVED QUANTITIES; DYNAMICAL-SYSTEMS; NORMAL FORMS; CALCULUS; CLASSIFICATION; NOETHER; THEOREM;
D O I
10.1063/1.4982639
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the invariance of stochastic differential equations under random diffeomorphisms and establish the determining equations for random Lie-point symmetries of stochastic differential equations, both in Ito and in Stratonovich forms. We also discuss relations with previous results in the literature. Published by AIP Publishing.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Lie-point symmetries and stochastic differential equations
    Gaeta, G
    Quintero, NR
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (48): : 8485 - 8505
  • [2] On Lie-point symmetries for Ito stochastic differential equations
    G. Gaeta
    C. Lunini
    [J]. Journal of Nonlinear Mathematical Physics, 2017, 24 : 90 - 102
  • [3] Lie-Point Symmetries and Backward Stochastic Differential Equations
    Zhang, Na
    Jia, Guangyan
    [J]. SYMMETRY-BASEL, 2019, 11 (09):
  • [4] On Lie-point symmetries for Ito stochastic differential equations
    Gaeta, G.
    Lunini, C.
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2017, 24 : 90 - 102
  • [5] Lie-point symmetries and stochastic differential equations: II
    Gaeta, G
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (27): : 4883 - 4902
  • [6] Random Lie-point symmetries of stochastic differential equations (vol 58, 053503, 2017)
    Gaeta, Giuseppe
    Spadaro, Francesco
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (12)
  • [7] Partial Lie-point symmetries of differential equations
    Cicogna, G
    Gaeta, G
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (03): : 491 - 512
  • [8] Random Lie-point symmetries
    Pedro José Catuogno
    Luis Roberto Lucinger
    [J]. Journal of Nonlinear Mathematical Physics, 2014, 21 : 149 - 165
  • [9] Random Lie-point symmetries
    Catuogno, Pedro Jose
    Lucinger, Luis Roberto
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2014, 21 (02) : 149 - 165
  • [10] Random Lie symmetries of Ito stochastic differential equations
    Kozlov, Roman
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (30)