Random Lie-point symmetries

被引:3
|
作者
Catuogno, Pedro Jose [1 ]
Lucinger, Luis Roberto [2 ]
机构
[1] Univ Estadual Campinas, Dept Math, Campinas, SP, Brazil
[2] Univ Brasilia, Dept Math, Brasilia, DF, Brazil
基金
日本学术振兴会;
关键词
Lie-point symmetries; Determining equations; Random symmetries; Stochastic differential equations; Ito formula; STOCHASTIC DIFFERENTIAL-EQUATIONS; STRATONOVICH DYNAMICAL-SYSTEMS; CONSERVED QUANTITIES; IT(O)OVER-CAP;
D O I
10.1080/14029251.2014.900984
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the notion of a random symmetry. It consists of taking the action given by a deterministic flow that maintains the solutions of a given differential equation invariant and replacing it with a stochastic flow. This generates a random action, which we call a random symmetry.
引用
收藏
页码:149 / 165
页数:17
相关论文
共 50 条
  • [1] Random Lie-point symmetries
    Pedro José Catuogno
    Luis Roberto Lucinger
    Journal of Nonlinear Mathematical Physics, 2014, 21 : 149 - 165
  • [2] Random Lie-point symmetries of stochastic differential equations
    Gaeta, Giuseppe
    Spadaro, Francesco
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (05)
  • [3] LIE-POINT SYMMETRIES IN BIFURCATION PROBLEMS
    CICOGNA, G
    GAETA, G
    ANNALES DE L INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE, 1992, 56 (04): : 375 - 414
  • [4] LIE-POINT SYMMETRIES PRESERVED BY DERIVATIVE
    Campoamor-Stursberg, Rutwig
    PROCEEDINGS OF THE TWENTY-FIRST INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2020, 21 : 75 - 88
  • [5] Partial Lie-point symmetries of differential equations
    Cicogna, G
    Gaeta, G
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (03): : 491 - 512
  • [6] Lie-point symmetries and stochastic differential equations
    Gaeta, G
    Quintero, NR
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (48): : 8485 - 8505
  • [7] Lie-point symmetries of the discrete Liouville equation
    Levi, D.
    Martina, L.
    Winternitz, P.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (02)
  • [8] Lie-point symmetries and nonlinear dynamical systems
    Cicogna, G
    Gaeta, G
    MATHEMATICAL AND COMPUTER MODELLING, 1997, 25 (8-9) : 101 - 113
  • [9] On Lie-point symmetries for Ito stochastic differential equations
    G. Gaeta
    C. Lunini
    Journal of Nonlinear Mathematical Physics, 2017, 24 : 90 - 102
  • [10] Random Lie-point symmetries of stochastic differential equations (vol 58, 053503, 2017)
    Gaeta, Giuseppe
    Spadaro, Francesco
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (12)