Random Lie-point symmetries

被引:3
|
作者
Catuogno, Pedro Jose [1 ]
Lucinger, Luis Roberto [2 ]
机构
[1] Univ Estadual Campinas, Dept Math, Campinas, SP, Brazil
[2] Univ Brasilia, Dept Math, Brasilia, DF, Brazil
基金
日本学术振兴会;
关键词
Lie-point symmetries; Determining equations; Random symmetries; Stochastic differential equations; Ito formula; STOCHASTIC DIFFERENTIAL-EQUATIONS; STRATONOVICH DYNAMICAL-SYSTEMS; CONSERVED QUANTITIES; IT(O)OVER-CAP;
D O I
10.1080/14029251.2014.900984
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the notion of a random symmetry. It consists of taking the action given by a deterministic flow that maintains the solutions of a given differential equation invariant and replacing it with a stochastic flow. This generates a random action, which we call a random symmetry.
引用
收藏
页码:149 / 165
页数:17
相关论文
共 50 条
  • [41] Exact solutions to magnetogasdynamics using Lie point symmetries
    B. Bira
    T. Raja Sekhar
    Meccanica, 2013, 48 : 1023 - 1029
  • [42] Lie point symmetries of differential-difference equations
    Levi, D.
    Winternitz, P.
    Yamilov, R. I.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (29)
  • [43] Lie point symmetries and ODEs passing the Painleve test
    Levi, D.
    Sekera, D.
    Winternitz, P.
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2018, 25 (04) : 604 - 617
  • [44] Lie point symmetries of the Lane-Emden systems
    Bozhkov, Y
    Martins, ACG
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 294 (01) : 334 - 344
  • [45] Lie remarkable partial differential equations characterized by Lie algebras of point symmetries
    Gorgone, Matteo
    Oliveri, Francesco
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 144 : 314 - 323
  • [46] Fluid relabelling symmetries, Lie point symmetries and the Lagrangian map in magnetohydrodynamics and gas dynamics
    Webb, G. M.
    Zank, G. P.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (03) : 545 - 579
  • [47] Lie point symmetries of the geodesic equations of the Godel's metric
    Al-Kindi, Fatma
    Ziad, Muhammad
    15TH MARCEL GROSSMANN MEETING, PT A, 2022, : 1341 - 1346
  • [48] Lie and Noether point symmetries for a class of nonautonomous dynamical systems
    Karpathopoulos, Leonidas
    Paliathanasis, Andronikos
    Tsamparlis, Michael
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (08)
  • [49] Bogoyavlenskij symmetries of ideal MHD equilibria as Lie point transformations
    Cheviakov, AF
    PHYSICS LETTERS A, 2004, 321 (01) : 34 - 49
  • [50] Lie point symmetries and exact solutions of couple KdV equations
    Qian, S. P.
    Tian Li-Xin
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2007, 47 (04) : 582 - 586