LIE-POINT SYMMETRIES PRESERVED BY DERIVATIVE

被引:0
|
作者
Campoamor-Stursberg, Rutwig [1 ]
机构
[1] UCM, Inst Matemat Interdisciplinar, Plaza Ciencias 3, E-28040 Madrid, Spain
关键词
Exact ODE; point symmetry; simple Lie algebra; symmetry analysis; ORDINARY DIFFERENTIAL-EQUATIONS; 2ND-ORDER; ALGEBRAS; SYSTEMS;
D O I
10.7546/giq-21-2020-75-88
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Conditions to guarantee that a point symmetry X of an nth-order differential equation q((n)) - omega = 0 is simultaneously a point symmetry of its derived equation q((n+1)) - (omega) over dot = 0 are analyzed, and the possible types of vector fields established. It is further shown that only the simple Lie algebra sl(2,R) for a very specific type of realization in the plane can be inherited by a derived equation.
引用
收藏
页码:75 / 88
页数:14
相关论文
共 50 条
  • [1] Random Lie-point symmetries
    Pedro José Catuogno
    Luis Roberto Lucinger
    Journal of Nonlinear Mathematical Physics, 2014, 21 : 149 - 165
  • [2] Random Lie-point symmetries
    Catuogno, Pedro Jose
    Lucinger, Luis Roberto
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2014, 21 (02) : 149 - 165
  • [3] LIE-POINT SYMMETRIES IN BIFURCATION PROBLEMS
    CICOGNA, G
    GAETA, G
    ANNALES DE L INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE, 1992, 56 (04): : 375 - 414
  • [4] Partial Lie-point symmetries of differential equations
    Cicogna, G
    Gaeta, G
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (03): : 491 - 512
  • [5] Lie-point symmetries and stochastic differential equations
    Gaeta, G
    Quintero, NR
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (48): : 8485 - 8505
  • [6] Lie-point symmetries of the discrete Liouville equation
    Levi, D.
    Martina, L.
    Winternitz, P.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (02)
  • [7] Lie-point symmetries and nonlinear dynamical systems
    Cicogna, G
    Gaeta, G
    MATHEMATICAL AND COMPUTER MODELLING, 1997, 25 (8-9) : 101 - 113
  • [8] On Lie-point symmetries for Ito stochastic differential equations
    G. Gaeta
    C. Lunini
    Journal of Nonlinear Mathematical Physics, 2017, 24 : 90 - 102
  • [9] Lie-Point Symmetries and Backward Stochastic Differential Equations
    Zhang, Na
    Jia, Guangyan
    SYMMETRY-BASEL, 2019, 11 (09):
  • [10] On Lie-point symmetries for Ito stochastic differential equations
    Gaeta, G.
    Lunini, C.
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2017, 24 : 90 - 102