Lie-point symmetries of the discrete Liouville equation

被引:12
|
作者
Levi, D. [1 ,2 ]
Martina, L. [3 ,4 ]
Winternitz, P. [1 ,2 ,5 ,6 ]
机构
[1] Univ Roma Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy
[2] Sez INFN Roma Tre, I-00146 Rome, Italy
[3] Univ Salento, Dipartimento Matemat & Fis, I-73100 Lecce, Italy
[4] Sez INFN Lecce, I-73100 Lecce, Italy
[5] Univ Montreal, Dept Math & Stat, Montreal, PQ H3C 3J7, Canada
[6] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Lie algebras of Lie groups; integrable systems; partial differential equations; discretization procedures for PDEs;
D O I
10.1088/1751-8113/48/2/025204
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Liouville equation is well known to be linearizable by a point transformation. It has an infinite dimensional Lie point symmetry algebra isomorphic to a direct sum of two Virasoro algebras. We show that it is not possible to discretize the equation keeping the entire symmetry algebra as point symmetries. We do however construct a difference system approximating the Liouville equation that is invariant under the maximal finite subgroup SLx(2, R) circle times SLy(2, R). The invariant scheme is an explicit one and provides a much better approximation of exact solutions than a comparable standard (noninvariant) scheme and also than a scheme invariant under an infinite dimensional group of generalized symmetries.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Lie point symmetries of near-horizon geometry equation
    Buk, E.
    Lewandowski, J.
    Szereszewski, A.
    PHYSICAL REVIEW D, 2020, 102 (12)
  • [22] Lie point symmetries of a general class of PDEs: The heat equation
    Paliathanasis, Andronikos
    Tsamparlis, Michael
    JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (12) : 2443 - 2456
  • [23] Darboux Transformations via Lie Point Symmetries: KdV Equation
    Li Yu-Qi
    Chen Jun-Chao
    Chen Yong
    Lou Sen-Yue
    CHINESE PHYSICS LETTERS, 2014, 31 (01)
  • [24] Space-charge-limited current density for nonplanar diodes with monoenergetic emission using Lie-point symmetries
    Harsha, N. R. Sree
    Halpern, Jacob M.
    Darr, Adam M.
    Garner, Allen L.
    PHYSICAL REVIEW E, 2022, 106 (06)
  • [25] Lie symmetries of a Painlevé-type equation without Lie symmetries
    M C Nucci
    Journal of Nonlinear Mathematical Physics, 2008, 15 : 205 - 211
  • [26] Solitary wave solutions of pZK equation using Lie point symmetries
    Kumar, Dharmendra
    Kumar, Sachin
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (02):
  • [27] Solitary wave solutions of pZK equation using Lie point symmetries
    Dharmendra Kumar
    Sachin Kumar
    The European Physical Journal Plus, 135
  • [28] Lie Symmetries of Ishimori Equation
    宋旭霞
    CommunicationsinTheoreticalPhysics, 2013, 59 (03) : 253 - 256
  • [29] Lie symmetries of a Painleve-type equation without Lie symmetries
    Nucci, M. C.
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2008, 15 (02) : 205 - 211
  • [30] Lie Symmetries of Ishimori Equation
    Song Xu-Xia
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2013, 59 (03) : 253 - 256