Lie symmetries of a Painleve-type equation without Lie symmetries

被引:28
|
作者
Nucci, M. C. [1 ]
机构
[1] Univ Perugia, Dipartimento Matemat & Informat, I-06123 Perugia, Italy
关键词
D O I
10.2991/jnmp.2008.15.2.7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use a method inspired by the Jacobi last multiplier [M. C. Nucci, Jacobi last multiplier and Lie symmetries: a novel application of an old relationship, J. Nonlinear Math. Phys. 12, 284-304 (2005)] in order to find Lie symmetries of a Painleve-type equation without Lie point symmetries.
引用
收藏
页码:205 / 211
页数:7
相关论文
共 50 条
  • [1] Lie symmetries of a Painlevé-type equation without Lie symmetries
    M C Nucci
    Journal of Nonlinear Mathematical Physics, 2008, 15 : 205 - 211
  • [2] Einstein's vacuum field equation: Painleve analysis and Lie symmetries
    Kaur, Lakhveer
    Wazwaz, Abdul-Majid
    WAVES IN RANDOM AND COMPLEX MEDIA, 2021, 31 (02) : 199 - 206
  • [3] Lie Symmetries of Ishimori Equation
    宋旭霞
    CommunicationsinTheoreticalPhysics, 2013, 59 (03) : 253 - 256
  • [4] Lie Symmetries of Ishimori Equation
    Song Xu-Xia
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2013, 59 (03) : 253 - 256
  • [5] Lie symmetries, Painleve analysis, and global dynamics for the temporal equation of radiating stars
    Leon, Genly
    Govender, Megandhren
    Paliathanasis, Andronikos
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (12) : 7728 - 7743
  • [6] PAINLEVE ANALYSIS AND LIE GROUP SYMMETRIES OF THE REGULARIZED LONG-WAVE EQUATION
    ROLLINS, DK
    JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (12) : 3331 - 3332
  • [7] GENERALIZED PAINLEVE FORMULATION AND LIE GROUP SYMMETRIES OF THE ZAKHAROV-KUZNETSOV EQUATION
    SHIVAMOGGI, BK
    ROLLINS, DK
    PHYSICS LETTERS A, 1991, 161 (03) : 263 - 266
  • [8] Lie point symmetries and ODEs passing the Painleve test
    Levi, D.
    Sekera, D.
    Winternitz, P.
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2018, 25 (04) : 604 - 617
  • [9] Lie Symmetries of Inviscid Burgers’ Equation
    Mehdi Nadjafikhah
    Advances in Applied Clifford Algebras, 2009, 19 : 101 - 112
  • [10] SYMMETRIES AND LIE ALGEBRA OF RAMANUJAN EQUATION
    Halder, Amlan K.
    Seshadri, Rajeswari
    Sinuvasan, R.
    Leach, P.G.L.
    arXiv, 2023,