Lie symmetries of a Painleve-type equation without Lie symmetries

被引:28
|
作者
Nucci, M. C. [1 ]
机构
[1] Univ Perugia, Dipartimento Matemat & Informat, I-06123 Perugia, Italy
关键词
D O I
10.2991/jnmp.2008.15.2.7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use a method inspired by the Jacobi last multiplier [M. C. Nucci, Jacobi last multiplier and Lie symmetries: a novel application of an old relationship, J. Nonlinear Math. Phys. 12, 284-304 (2005)] in order to find Lie symmetries of a Painleve-type equation without Lie point symmetries.
引用
收藏
页码:205 / 211
页数:7
相关论文
共 50 条
  • [31] Global actions of Lie symmetries for the nonlinear heat equation
    Sepanski, Mark R.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 360 (01) : 35 - 46
  • [32] A completely exceptional equation uniquely characterized by lie symmetries
    Oliveri, F
    Baumann, G
    WASCOM 2003: 12TH CONFERENCE ON WAVES AND STABILITY IN CONTINUOUS MEDIA, PROCEEDINGS, 2004, : 372 - 379
  • [33] Lie-point symmetries of the discrete Liouville equation
    Levi, D.
    Martina, L.
    Winternitz, P.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (02)
  • [34] Lie point symmetries classification of the mixed Liénard-type equation
    Ajey K. Tiwari
    S. N. Pandey
    M. Senthilvelan
    M. Lakshmanan
    Nonlinear Dynamics, 2015, 82 : 1953 - 1968
  • [35] Lie point symmetries classification of the mixed Li,nard-type equation
    Tiwari, Ajey K.
    Pandey, S. N.
    Senthilvelan, M.
    Lakshmanan, M.
    NONLINEAR DYNAMICS, 2015, 82 (04) : 1953 - 1968
  • [36] THE LIE ALGEBRAIC STRUCTURE OF SYMMETRIES GENERATED BY HEREDITARY SYMMETRIES
    TU, GZ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (09): : 1951 - 1957
  • [37] Lie Symmetries and Weak Transversality
    P. Tempesta
    Theoretical and Mathematical Physics, 2003, 137 : 1609 - 1621
  • [38] Limit cycles and Lie symmetries
    Freire, Emilio
    Gasull, Armengol
    Guillamon, Antoni
    BULLETIN DES SCIENCES MATHEMATIQUES, 2007, 131 (06): : 501 - 517
  • [39] ON LIE POINT SYMMETRIES IN MECHANICS
    CICOGNA, G
    GAETA, G
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1992, 107 (09): : 1085 - 1096
  • [40] Lie symmetries for lattice equations
    Levi, D
    GROUP 24 : PHYSICAL AND MATHEMATICAL ASPECTS OF SYMMETRIES, 2003, 173 : 103 - 111