Disprove of a Conjecture on the Doubly Connected Domination Subdivision Number

被引:1
|
作者
Kosari, Saeed [1 ]
Shao, Zehui [1 ]
Sheikholeslami, Seyed Mahmoud [2 ]
Karami, Hossein [2 ]
Volkmann, Lutz [3 ]
机构
[1] Guangzhou Univ, Inst Comp Sci & Technol, Guangzhou 510006, Peoples R China
[2] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
[3] Rhein Westfal TH Aachen, Lehrstuhl Math 2, D-52056 Aachen, Germany
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Doubly connected domination number; Doubly connected domination subdivision number;
D O I
10.1007/s41980-021-00586-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A set S of vertices of a connected graph G is a doubly connected dominating set (DCDS) if every vertex not in S is adjacent to some vertex in S and the subgraphs induced by S and V - S are connected. The doubly connected domination number gamma(cc)(G) is the minimum size of such a set. The doubly connected domination subdivision number sd(gamma cc) (G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) to increase the doubly connected domination number. It was conjectured (Karami et al. in Mat Vesnic 64:232-239, 2012) that the doubly connected domination subdivision number of a connected planar graph is at most two. In this paper, we disprove this conjecture by showing that the doubly connected domination subdivision number of the regular icosahedron graph is three.
引用
收藏
页码:1351 / 1355
页数:5
相关论文
共 50 条
  • [1] Disprove of a Conjecture on the Doubly Connected Domination Subdivision Number
    Saeed Kosari
    Zehui Shao
    Seyed Mahmoud Sheikholeslami
    Hossein Karami
    Lutz Volkmann
    [J]. Bulletin of the Iranian Mathematical Society, 2022, 48 : 1351 - 1355
  • [2] Disprove of a conjecture on the double Roman domination number
    Shao, Z.
    Khoeilar, R.
    Karami, H.
    Chellali, M.
    Sheikholeslami, S. M.
    [J]. AEQUATIONES MATHEMATICAE, 2024, 98 (01) : 241 - 260
  • [3] Disprove of a conjecture on the double Roman domination number
    Z. Shao
    R. Khoeilar
    H. Karami
    M. Chellali
    S. M. Sheikholeslami
    [J]. Aequationes mathematicae, 2024, 98 : 241 - 260
  • [4] DOUBLY CONNECTED DOMINATION SUBDIVISION NUMBERS OF GRAPHS
    Karami, H.
    Khoeilar, R.
    Sheikholeslami, S. M.
    [J]. MATEMATICKI VESNIK, 2012, 64 (03): : 232 - 239
  • [5] Disproof of a Conjecture on the Subdivision Domination Number of a Graph
    O. Favaron
    H. Karami
    S. M. Sheikholeslami
    [J]. Graphs and Combinatorics, 2008, 24 : 309 - 312
  • [6] Disproof of a conjecture on the subdivision domination number of a graph
    Favaron, O.
    Karami, H.
    Sheikholeslami, S. M.
    [J]. GRAPHS AND COMBINATORICS, 2008, 24 (04) : 309 - 312
  • [7] A Proof of a Conjecture on the Connected Domination Number
    Kosari, S.
    Shao, Z.
    Sheikholeslami, S. M.
    Chellali, M.
    Khoeilar, R.
    Karami, H.
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (06) : 3523 - 3533
  • [8] A Proof of a Conjecture on the Connected Domination Number
    S. Kosari
    Z. Shao
    S. M. Sheikholeslami
    M. Chellali
    R. Khoeilar
    H. Karami
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 3523 - 3533
  • [9] On a conjecture concerning total domination subdivision number in graphs
    Kosari, S.
    Shao, Z.
    Khoeilar, R.
    Karami, H.
    Sheikholeslami, S. M.
    Hao, G.
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2021, 18 (03) : 154 - 157
  • [10] A proof of a conjecture on the paired-domination subdivision number
    Shao, Zehui
    Sheikholeslami, Seyed Mahmoud
    Chellali, Mustapha
    Khoeilar, Rana
    Karami, Hossein
    [J]. GRAPHS AND COMBINATORICS, 2022, 38 (03)